MHB Non-Dimensionalizing PDE with Variable Scaling

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Pde
Click For Summary
The discussion focuses on non-dimensionalizing the heat equation represented by the partial differential equation (PDE) with variable scaling. The variables are transformed using the definitions \(x_* = \frac{x}{L}\), \(t_* = \frac{\alpha t}{L^2}\), and \(\theta = \frac{T - T_{\infty}}{T_i - T_{\infty}}\). This transformation leads to a canonical form of the diffusion equation, where the boundary conditions become \(\theta(0, t_*) = \theta(1, t_*) = 0\) and the initial condition is \(\theta(x_*, 0) = 1\). The discussion also addresses the challenge of substituting \(T\) with \(\theta\) in the boundary and initial conditions, indicating a need for clarity in expressing these conditions in terms of the new variables. The conversation emphasizes the importance of correctly applying the variable scaling to simplify the problem.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\frac{1}{\alpha}T_t = T_{xx}
$$
B.C are
$$
T(0,t) = T(L,t) = T_{\infty}
$$
I.C is
$$
T(x,0) = T_i.
$$
By recasting this problem in terms of non-dimensional variables, the diffusion equation along with its boundary conditions can be put into a canonical form.
Suppose that we introduce variable scaling defined by
$$
x_* = \frac{x}{L}\quad\quad t_* = \frac{\alpha t}{L^2}\quad\quad \theta = \frac{T - T_{\infty}}{T_i - T_{\infty}}
$$
With this change of variables, show that the problem definition becomes
\begin{alignat*}{5}
\theta_{t_*} & = & \theta_{x_*x_*} & & \\
\theta(0,t_*) & = & \theta(1,t_*) & = & 0\\
\theta(x_*,0) & = & 1
\end{alignat*}

$$
\frac{1}{L^2}\frac{\partial T}{\partial t_*} = \frac{1}{L^2}\frac{\partial^2 T}{\partial x_*^2}
$$
Do I make the $T$ substitution just as $T = \theta(T_i - T_{\infty}) + T_{\infty}$?
 
Physics news on Phys.org
dwsmith said:
$$
\frac{1}{\alpha}T_t = T_{xx}
$$
B.C are
$$
T(0,t) = T(L,t) = T_{\infty}
$$
I.C is
$$
T(x,0) = T_i.
$$
By recasting this problem in terms of non-dimensional variables, the diffusion equation along with its boundary conditions can be put into a canonical form.
Suppose that we introduce variable scaling defined by
$$
x_* = \frac{x}{L}\quad\quad t_* = \frac{\alpha t}{L^2}\quad\quad \theta = \frac{T - T_{\infty}}{T_i - T_{\infty}}
$$
With this change of variables, show that the problem definition becomes
\begin{alignat*}{5}
\theta_{t_*} & = & \theta_{x_*x_*} & & \\
\theta(0,t_*) & = & \theta(1,t_*) & = & 0\\
\theta(x_*,0) & = & 1
\end{alignat*}

$$
\frac{1}{L^2}\frac{\partial T}{\partial t_*} = \frac{1}{L^2}\frac{\partial^2 T}{\partial x_*^2}
$$
Do I make the $T$ substitution just as $T = \theta(T_i - T_{\infty}) + T_{\infty}$?

For the BC, I have now
$$
T\left(0=x=x_*L,t = \frac{L^2t_*}{\alpha}\right) = T\left(1,t = \frac{L^2t_*}{\alpha}\right) = T_{\infty}
$$
How do I just get $t_*$ in the BC? How do I change T to theta?
 
dwsmith said:
For the BC, I have now
$$
T\left(0=x=x_*L,t = \frac{L^2t_*}{\alpha}\right) = T\left(1,t = \frac{L^2t_*}{\alpha}\right) = T_{\infty}
$$
How do I just get $t_*$ in the BC? How do I change T to theta?

So I have solved everything except for the change on the boundary conditions and initial conditions.

That part has me stuck.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K