A Non-sinusoidal waveform model

P3dr0
Messages
1
Reaction score
0
Hi, I am a ninth-grade student from Portugal with nothing to do, and I have decided that I want to build a simple regression algorithm in Desmos (the online calculator) to fit random binary inputs and maybe predict the next binary digits (although that part may take a considerable amount of time). For now, I am just trying to find a way to create non-sinusoidal waves, but I can't find any model for it. Can anybody tell me a simple yet effective model for what I am trying to achieve?
PS: I have created an algorithm based on Fourier's theorem, but it doesn't work quite well. (I'll attach a photo and a link of what I have done.) This is the simplest version I have created so far, but I have tried other parameters. However, when I add more elements (more parameters), the function becomes noisier.

Link: https://www.desmos.com/calculator/h3nww18l8p
 

Attachments

  • Captura de ecrã 2024-04-03 190941.png
    Captura de ecrã 2024-04-03 190941.png
    11.9 KB · Views: 74
Mathematics news on Phys.org
What you have done is perfectly correct, but I am not sure that it is a good example of what you want to do. Notice that your example is perfectly linear with a slope of 1 and very near the (x=0, y=0) origin. The sin() function is also very linear with a slope of 1 near the origin. The tiny value of ##b## means that the inputs of sin() will be very close to 0 and the large value of ##a## means that the slope will be close to 1. If ##a=1/b##, the slope would be exactly 1 at the origin.
 
Welcome to PF.

P3dr0 said:
to fit random binary inputs and maybe predict the next binary digits
If the inputs are random, how can you do any predictions for future digits?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top