Undergrad Norm of a Functional and wavefunction analysis

Click For Summary
The discussion revolves around analyzing the properties of an ordinary differential equation (ODE) and its solution within a Hilbert space framework. The user has successfully generated a matrix representation of the ODE and explored its eigenvalues, eigenvectors, and phase-portrait but seeks guidance on applying functional analysis to represent the general solution. It is clarified that while a "functional" is a specific type of function, wavefunctions can indeed be represented in a Hilbert space, particularly through Fourier series. The coefficients of these series act as vectors in the Hilbert space, facilitating this representation. The user plans to further investigate the Fourier transform to enhance their understanding of these concepts in relation to Hilbert spaces.
SeM
Hi, I am working on a home-task to analyse the properties of a ODE and its solution in a Hilbert space, and in this context I have:

1. Generated a matrix form of the ODE, and analysed its phase-portrait, eigenvalues and eigenvectors, the limits of the solution and the condition number of the matrix.
2. I have however not applied the Functional analysis of the general solution, as I am not sure how to get by this.

It appears from Kreyszig "Intro to Functional Analysis" that a FUNCTIONAL can be represented in a Hilbert space. Does this mean that a FUNCTION (i.e a wavefunction) can also equally be represented in a Hilbert space?

I have calculated the inner product of the ODE matrix, and defined its neither positive or negative definite value. However, which steps should I take in order to Represent the Function and general solution of the ODE in a Hilbert space?

Thanks!
 
Physics news on Phys.org
SeM said:
It appears from Kreyszig "Intro to Functional Analysis" that a FUNCTIONAL can be represented in a Hilbert space. Does this mean that a FUNCTION (i.e a wavefunction) can also equally be represented in a Hilbert space?
If you are asking if a statement that we can do such-and-such with an arbitrary "Functional" implies that we can also do such-and-such with an arbitrary "Function" the answer is: No. A "functional" is a particular type of function. So a functional has properties that an arbitrary function need not have.

However, in the particular case you are asking about (i.e. a wave function) the answer is probably yes. For example, a function represented in a Fourier series can be considered to be a vector in a Hilbert Space by regarding each of the sine and cosine functions as a basis vector in the Hilbert Space.

What does Kreyszig mean by "represented"? The coefficients of the sine and cosine functions can be regarded as "representing" the function as a vector in the Hilbert Space.
 
  • Like
Likes SeM
Stephen Tashi said:
If you are asking if a statement that we can do such-and-such with an arbitrary "Functional" implies that we can also do such-and-such with an arbitrary "Function" the answer is: No. A "functional" is a particular type of function. So a functional has properties that an arbitrary function need not have.

However, in the particular case you are asking about (i.e. a wave function) the answer is probably yes. For example, a function represented in a Fourier series can be considered to be a vector in a Hilbert Space by regarding each of the sine and cosine functions as a basis vector in the Hilbert Space.

What does Kreyszig mean by "represented"? The coefficients of the sine and cosine functions can be regarded as "representing" the function as a vector in the Hilbert Space.
Thanks for this Stephen, I think that solves it. I will look into the Fourier transform, and then further on how that can be applied in a Hilbert space.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
817
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K