(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Consider the wave function

[tex]\Psi(x, t) = Ae^{-\lambda|x|}e^{-i\omega t}[/tex]

where A, [tex]\lambda[/tex] and [tex]\omega[/tex] are positive real constants.

Normalize [tex]\Psi[/tex]

2. Relevant equations

[tex]\int |\Psi(x, t)|^{2} dx = 1[/tex]

[tex]|\Psi(x, t)|^{2} = \Psi^{*}\Psi[/tex]

3. The attempt at a solution

I have a model solution - with a step missing, I think my error is in complex conjugate math...

1, Finding [tex]|\Psi(x, t)|^{2}[/tex]

[tex]\Psi^{*}\Psi = (Ae^{-\lambda|x|}e^{i\omega t}) (Ae^{-\lambda|x|}e^{-i\omega t})[/tex]

[tex] = A^{2}e^{-2\lambda|x|}e^{i\omega t}e^{-i\omega t}[/tex]

[tex] = A^{2}e^{-2\lambda|x|}e^{0} = A^{2}e^{-2\lambda|x|}[/tex]

I think this is where my problem is, I am told that

[tex]|\Psi(x, t)|^{2} = 2|A|^{2}e^{-2\lambda|x|}[/tex]

So I am missing a factor of 2?

Is there a complex conjugate rule somewhere I am missing?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Normalizing wave function, factor of 2 out

**Physics Forums | Science Articles, Homework Help, Discussion**