Nuclear Macroscopic cross-section

Click For Summary
SUMMARY

The discussion centers on the calculation of the macroscopic cross-section for a mixture of two species, specifically using the equation $$\Sigma_a^{(mix)} = f_1 \Sigma_{a1}^{(norm)} + f_2 \Sigma_{a2}^{(norm)}$$. Participants clarify the relationship between the number density of constituents in a mixture and their normal densities, emphasizing the importance of including microscopic absorption cross-sections $$\sigma_{X}$$ and $$\sigma_{Y}$$ in the calculations. The final formula presented is $$\Sigma_{mix}= \frac{No\ of\ X\ atoms}{Volume\ of\ X} \times \frac{Volume\ of\ X}{Volume\ of\ X+Y} \times \sigma_{X} + \frac{No\ of\ Y\ atoms}{Volume\ of\ Y} \times \frac{Volume\ of\ Y}{Volume\ of\ X+Y} \times \sigma_{Y}$$, which correctly accounts for the dimensions and units involved.

PREREQUISITES
  • Understanding of macroscopic and microscopic cross-sections in nuclear engineering.
  • Familiarity with number density concepts and their applications in mixtures.
  • Knowledge of volume fractions and their significance in physical calculations.
  • Basic grasp of dimensional analysis in physics.
NEXT STEPS
  • Study the derivation of macroscopic cross-sections in nuclear reactions.
  • Learn about the role of microscopic cross-sections in neutron transport theory.
  • Explore the concept of number density in multi-component systems.
  • Investigate dimensional analysis techniques for verifying physical equations.
USEFUL FOR

Nuclear engineers, physicists, and students studying nuclear engineering concepts, particularly those focused on cross-section calculations and mixture properties.

badvot
Messages
5
Reaction score
1
Homework Statement
Calculate the macroscopic cross section using volume fractions
Relevant Equations
Macroscopic nuclear cross section
This question is in the book " Introduction to nuclear engineering by Lamarsh" Chapter3:
Screenshot 2024-05-03 210913.png

I think it's pretty basic but I couldn't find the proper way to prove it, and now I even suspect that it's not a correct question.
My attempt solution:


Screenshot 2024-05-03 211748.png


I would very much appreciate your help. Thanks in advance.
 
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
You need to distinguish between the number density ##N_i^{(mix)}## of constituent ##i## in the mixture and the number density ##N_i^{(norm)}## of constituent ##i## at its normal density.

How is ##N_i^{(mix)}## related to ##N_i^{(norm)}## and ##f_i##?

You are asked to show, $$\Sigma_a^{(mix)} = f_1 \Sigma_{a1}^{(norm)} + f_2 \Sigma_{a2}^{(norm)} + ...$$
 
  • Informative
Likes   Reactions: badvot
Thank you so much. I think I get it now, and here is my understanding:
If we assume two species (x,y)
$$\Sigma_{mix}= \frac{No\ of\ X\ atoms}{Volume\ of\ X} \times \frac{Volume\ of\ X}{Volume\ of\ X+Y} + \frac{No\ of\ Y\ atoms}{Volume\ of\ Y} \times \frac{Volume\ of\ Y}{Volume\ of\ X+Y}$$
 
badvot said:
Thank you so much. I think I get it now, and here is my understanding:
If we assume two species (x,y)
$$\Sigma_{mix}= \frac{No\ of\ X\ atoms}{Volume\ of\ X} \times \frac{Volume\ of\ X}{Volume\ of\ X+Y} + \frac{No\ of\ Y\ atoms}{Volume\ of\ Y} \times \frac{Volume\ of\ Y}{Volume\ of\ X+Y}$$
The left side of your equation, ##\Sigma_{mix}##, is the macroscopic absorption cross-section of the mixture. This has the dimension of inverse length. However, the right side of your equation has the dimension of inverse volume.

Also, you would expect ##\Sigma_{mix}## to depend on the microscopic absorption cross-sections ##\sigma_{a1}## and ##\sigma_{a2}## of the two species. However, these do not appear on the right side.
 
  • Like
Likes   Reactions: badvot
Oh, I guess I was so enthusiastic to write the answer that I forgot to include the microscopic cross-section for each species :oldbiggrin:
$$\Sigma_{mix}= \frac{No\ of\ X\ atoms}{Volume\ of\ X} \times
\frac{Volume\ of\ X}{Volume\ of\ X+Y} \times \sigma_{X} + \frac{No\ of\ Y\ atoms}{Volume\ of\ Y} \times \frac{Volume\ of\ Y}{Volume\ of\ X+Y} \times \sigma_{Y}$$
The volume fractions are those below, while the rest of the terms ##\sigma \times \frac{No\ of\ atoms}{Volume}## equal the ##\Sigma_{a}^{(norm)}## for each species
$$\frac{Volume\ of\ X}{Volume\ of\ X+Y} =F_{X}$$
$$\frac{Volume\ of\ Y}{Volume\ of\ X+Y} =F_{Y}$$
The units check out
$$cm^{-1}= \frac{\#}{cm^{3}} \times \frac{cm^{3}}{cm^{3}} \times cm^{2} + \frac{\#}{cm^{3}} \times \frac{cm^{3}}{cm^{3}} \times cm^{2} $$
 
OK. That looks good.
 
  • Like
Likes   Reactions: badvot

Similar threads

Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K