MHB Number of possible outcomes where Head is recorded for a coin toss

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Head
Click For Summary
The probability of getting exactly 2 heads in 4 coin tosses can be calculated using the binomial probability formula, yielding a result of 3/8. There are 16 total possible outcomes when tossing a coin 4 times, with 6 outcomes resulting in exactly 2 heads. The calculation involves determining the number of combinations of 2 heads in 4 tosses, which is represented as 4 choose 2. Each individual outcome has a probability of 1/16, but the presence of multiple arrangements leads to the final probability of 3/8. This method is more efficient than drawing a decision tree for larger sample spaces.
tmt1
Messages
230
Reaction score
0
A coin is tossed 4 times.

Is there a way to determine mathematically what is the probability that exactly 2 heads occur?

By drawing a decision tree I can determine that it is 6/16, but this seems like an arduous process for larger numbers.
 
Physics news on Phys.org
Using the binomial probability formula, we find:

$$P(X)={4 \choose 2}\left(\frac{1}{2}\right)^2\cdot\left(\frac{1}{2}\right)^{4-2}=\frac{6}{16}=\frac{3}{8}$$
 
Writing 'em out helps but I wouldn't want to attempt that on a "large" sample space.

There are 16 possible outcomes and 6 possibilities where there are exactly two heads. 6/16 = 3/8.
 
Or: one possible outcome for 'two heads in four tosses" is HHTT. The probability the coin comes up heads or tails on each toss is 1/2 so the probability of that is (1/2)^4= 1/16.

But there are \frac{4!}{2!2!}= \frac{4(3)(2)(1)}{(2(1))(2(1))}= \frac{4(3)}{2}= 6 different possible orders (they are "HHTT", "HTHT", "HTTH", "THTH", "THHT", and "TTHH" but you don't have to write them out to know there are 6) so that the probability of "two heads in four coin tosses" is \frac{6}{16}= \frac{3}{8}
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
7K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K