MHB Numbers with a quadratic property

Click For Summary
SUMMARY

The discussion centers on the equation \(2x^2+x = 3y^2+y\) and the search for pairs of positive integers \(x\) and \(y\) that satisfy this condition. The key insight is that \(x-y\) must be a perfect square, denoted as \(u^2\), leading to the substitution \(y = x - u^2\). This transforms the original equation into a quadratic in \(x\), allowing for the derivation of integer solutions through the Pell-type equation \(v^2 = 6u^2 + 1\). The solutions yield an infinite sequence of positive integer pairs, with the smallest being \( (22, 18) \) and subsequent pairs growing rapidly.

PREREQUISITES
  • Understanding of quadratic equations and their properties
  • Familiarity with Pell's equation and integer solutions
  • Knowledge of continued fractions and their applications in approximating square roots
  • Basic algebraic manipulation skills for solving equations
NEXT STEPS
  • Study the properties of Pell's equations and methods for finding integer solutions
  • Learn about continued fractions and their role in approximating irrational numbers
  • Explore the theory of quadratic forms and their applications in number theory
  • Investigate further examples of integer solutions to similar quadratic equations
USEFUL FOR

Mathematicians, number theorists, and students interested in quadratic equations, Pell's equations, and integer solutions to algebraic problems.

Opalg
Gold Member
MHB
Messages
2,778
Reaction score
13
A recent https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308 asked about properties of a pair of positive integers $x$, $y$ such that $2x^2+x = 3y^2+y$. But it is not obvious that any such pairs exist. So the challenge is, are there any such pairs of positive integers? If so, what is the smallest such pair? After that, what is the next smallest pair?
 
Mathematics news on Phys.org
Opalg said:
A recent https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308 asked about properties of a pair of positive integers $x$, $y$ such that $2x^2+x = 3y^2+y$. But it is not obvious that any such pairs exist. So the challenge is, are there any such pairs of positive integers? If so, what is the smallest such pair? After that, what is the next smallest pair?
Hint:
[sp]As shown in the https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308, $x-y$ is a perfect square, say $x-y = u^2$. Then $y = x-u^2$. Use that to find and solve an equation for $x$ is terms of $u$. What condition must $u$ satisfy to ensure that $x$ is an integer?[/sp]
 
[sp]
As a matter of fact, I was interested in that very question. The question is about finding points with integer coordinates on a hyperbola, and this is a classical problem on representation by quadratic forms. I wrote something about it here. Sorry, it's in French, but ‶the equations speak for themselves″ :)
[/sp]
 
Congratulations to castor28 for his solution. Mine is quite similar:

[sp]Substituting $y=x-u^2$, the equation $2x^2+x = 3y^2+y$ becomes $$2x^2+x = 3(x-u^2)^2 + x - u^2 = 3x^2 - 6u^2x + 3u^4 + x - u^2,$$ $$x^2 - 6u^2x + u^2(3u^2-1) = 0,$$ $$x = 3u^2 \pm\sqrt{u^2(6u^2 + 1)}.$$ We want $x$ to be positive, so take the positive square root to get $x = 3u^2 + uv$, where $v = \sqrt{6u^2+1}$. We also want $v$ to be an integer, so we want integer solutions to the equation $v^2 = 6u^2+1$. That is a https://mathhelpboards.com/showthread.php?2905-The-Pell-Sequence-type equation. To see how to solve it, divide by $u^2$ to get $\left(\frac vu\right)^2 = 6 + \frac1{u^2}$. If $u$ is large, then $\frac1{u^2}$ is very small and so $\frac vu$ will be close to $\sqrt6$. The best rational approximations to $\sqrt6$ come from its continued fraction convergents. The helpful continued fraction calculator here gives this table:

https://www.physicsforums.com/attachments/9693._xfImport

The convergents $\frac vu$ are alternately slightly larger and slightly smaller than $\sqrt6$, corresponding to solutions of $v^2 = 6u^2+1$ and $v^2 = 6u^2-1$. So from alternate rows of that table we get

$$\begin{array}{r|r|r|r}v&u&x=u(3u+v)&y=u(2u+v) \\ \hline 5&2&22&18 \\ 49&20&2180&1780 \\ 485&198&213642&174438 \\ 4801&1960&20934760&17093160\end{array}$$

After that, the numbers increase rapidly, giving an infinite sequence of positive integer solutions of $2x^2+x = 3y^2+y$. (I'm pleased to see that my numbers tally exactly with castor28's!)[/sp]
 

Attachments

  • Screenshot 2020-04-13 at 12.38.51.png
    Screenshot 2020-04-13 at 12.38.51.png
    11.9 KB · Views: 154

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K