Suvadip
- 68
- 0
I need to solve the following system of equations for n=0,1,2 subject to the given initial and boundary conditions. Is it possible to solve the system numerically. If yes, please give me some idea which scheme I should use for better accuracy and how should I proceed. The coupled boundary conditions are challenging for me. Please help.
\frac{\partial C_n}{\partial t}-\frac{\partial^2 C_n}{\partial r^2}-\frac{1}{r}\frac{\partial C_n}{\partial r}=\beta n\, f(r,t)C_{n-1}+n(n-1)C_{n-2}
\frac{\partial \zeta_n}{\partial t}-\frac{\partial^2\zeta_n}{\partial r^2}-\frac{1}{r}\frac{\partial \zeta_n}{\partial r}=\beta n \,g(r,t)\zeta_{n-1}+n(n-1)\zeta_{n-2}C_n(0,r)=1 \quad\mbox{for}\quad n=0
=0 \quad\mbox{for}\quad n>0\zeta_n(0,r)=1 \quad\mbox{for}\quad n=0
\quad\quad\quad=0 \quad\mbox{for}\quad n>0\frac{\partial C_n}{\partial r}+\gamma C_n=0 \quad\mbox{at}\quad r=a
\frac{\partial C_n}{\partial r}=\kappa \frac{\partial \zeta_n}{\partial r} \quad\mbox{at}\quad r=b
C_n=\lambda\zeta_n \quad\mbox{at}\quad r=b
\frac{\partial \zeta_n}{\partial r}=0 \quad\mbox{at}\quad r=0
\frac{\partial C_n}{\partial t}-\frac{\partial^2 C_n}{\partial r^2}-\frac{1}{r}\frac{\partial C_n}{\partial r}=\beta n\, f(r,t)C_{n-1}+n(n-1)C_{n-2}
\frac{\partial \zeta_n}{\partial t}-\frac{\partial^2\zeta_n}{\partial r^2}-\frac{1}{r}\frac{\partial \zeta_n}{\partial r}=\beta n \,g(r,t)\zeta_{n-1}+n(n-1)\zeta_{n-2}C_n(0,r)=1 \quad\mbox{for}\quad n=0
=0 \quad\mbox{for}\quad n>0\zeta_n(0,r)=1 \quad\mbox{for}\quad n=0
\quad\quad\quad=0 \quad\mbox{for}\quad n>0\frac{\partial C_n}{\partial r}+\gamma C_n=0 \quad\mbox{at}\quad r=a
\frac{\partial C_n}{\partial r}=\kappa \frac{\partial \zeta_n}{\partial r} \quad\mbox{at}\quad r=b
C_n=\lambda\zeta_n \quad\mbox{at}\quad r=b
\frac{\partial \zeta_n}{\partial r}=0 \quad\mbox{at}\quad r=0
Last edited: