MHB Numerical solution of partial differential equation

AI Thread Summary
The discussion focuses on numerically solving a system of partial differential equations with specific initial and boundary conditions for n=0,1,2. The equations involve coupled boundary conditions that present challenges for the solver. Suggestions for improving accuracy include exploring various numerical schemes, although specific methods are not detailed. A recommendation is made to consult the journal "Numerical Methods for Partial Differential Equations" for relevant resources and methodologies. Access to the journal online is also provided for further research.
Suvadip
Messages
68
Reaction score
0
I need to solve the following system of equations for n=0,1,2 subject to the given initial and boundary conditions. Is it possible to solve the system numerically. If yes, please give me some idea which scheme I should use for better accuracy and how should I proceed. The coupled boundary conditions are challenging for me. Please help.

\frac{\partial C_n}{\partial t}-\frac{\partial^2 C_n}{\partial r^2}-\frac{1}{r}\frac{\partial C_n}{\partial r}=\beta n\, f(r,t)C_{n-1}+n(n-1)C_{n-2}
\frac{\partial \zeta_n}{\partial t}-\frac{\partial^2\zeta_n}{\partial r^2}-\frac{1}{r}\frac{\partial \zeta_n}{\partial r}=\beta n \,g(r,t)\zeta_{n-1}+n(n-1)\zeta_{n-2}C_n(0,r)=1 \quad\mbox{for}\quad n=0
=0 \quad\mbox{for}\quad n>0\zeta_n(0,r)=1 \quad\mbox{for}\quad n=0
\quad\quad\quad=0 \quad\mbox{for}\quad n>0\frac{\partial C_n}{\partial r}+\gamma C_n=0 \quad\mbox{at}\quad r=a
\frac{\partial C_n}{\partial r}=\kappa \frac{\partial \zeta_n}{\partial r} \quad\mbox{at}\quad r=b
C_n=\lambda\zeta_n \quad\mbox{at}\quad r=b
\frac{\partial \zeta_n}{\partial r}=0 \quad\mbox{at}\quad r=0
 
Last edited:
Mathematics news on Phys.org
You should check out the journal on Numerical Methods for Partial Differential Equations. It comes out in monthly in volumes that are the size of a 300 page textbook. I have volume 29 number 6 Nov 2013 and that may not be much of a help to you but there is bound to be a volume of interest.

You can also view the journal online at wilyonlielibrary.com/journal/num
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top