MHB Numerical solution of partial differential equation

Click For Summary
The discussion focuses on numerically solving a system of partial differential equations with specific initial and boundary conditions for n=0,1,2. The equations involve coupled boundary conditions that present challenges for the solver. Suggestions for improving accuracy include exploring various numerical schemes, although specific methods are not detailed. A recommendation is made to consult the journal "Numerical Methods for Partial Differential Equations" for relevant resources and methodologies. Access to the journal online is also provided for further research.
Suvadip
Messages
68
Reaction score
0
I need to solve the following system of equations for n=0,1,2 subject to the given initial and boundary conditions. Is it possible to solve the system numerically. If yes, please give me some idea which scheme I should use for better accuracy and how should I proceed. The coupled boundary conditions are challenging for me. Please help.

\frac{\partial C_n}{\partial t}-\frac{\partial^2 C_n}{\partial r^2}-\frac{1}{r}\frac{\partial C_n}{\partial r}=\beta n\, f(r,t)C_{n-1}+n(n-1)C_{n-2}
\frac{\partial \zeta_n}{\partial t}-\frac{\partial^2\zeta_n}{\partial r^2}-\frac{1}{r}\frac{\partial \zeta_n}{\partial r}=\beta n \,g(r,t)\zeta_{n-1}+n(n-1)\zeta_{n-2}C_n(0,r)=1 \quad\mbox{for}\quad n=0
=0 \quad\mbox{for}\quad n>0\zeta_n(0,r)=1 \quad\mbox{for}\quad n=0
\quad\quad\quad=0 \quad\mbox{for}\quad n>0\frac{\partial C_n}{\partial r}+\gamma C_n=0 \quad\mbox{at}\quad r=a
\frac{\partial C_n}{\partial r}=\kappa \frac{\partial \zeta_n}{\partial r} \quad\mbox{at}\quad r=b
C_n=\lambda\zeta_n \quad\mbox{at}\quad r=b
\frac{\partial \zeta_n}{\partial r}=0 \quad\mbox{at}\quad r=0
 
Last edited:
Mathematics news on Phys.org
You should check out the journal on Numerical Methods for Partial Differential Equations. It comes out in monthly in volumes that are the size of a 300 page textbook. I have volume 29 number 6 Nov 2013 and that may not be much of a help to you but there is bound to be a volume of interest.

You can also view the journal online at wilyonlielibrary.com/journal/num
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
327
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K