Numerical solution of partial differential equation

Click For Summary
SUMMARY

The discussion focuses on the numerical solution of a coupled system of partial differential equations (PDEs) with specific initial and boundary conditions. The equations involve variables C_n and ζ_n, with dependencies on functions f(r,t) and g(r,t). Participants recommend consulting the journal "Numerical Methods for Partial Differential Equations" for advanced techniques and methodologies, particularly for handling challenging coupled boundary conditions. The discussion emphasizes the importance of selecting appropriate numerical schemes to achieve better accuracy in solutions.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with numerical methods for PDEs
  • Knowledge of boundary value problems
  • Experience with mathematical modeling in physics or engineering contexts
NEXT STEPS
  • Research numerical methods for solving coupled PDEs
  • Explore finite difference and finite element methods for PDEs
  • Learn about stability and convergence criteria in numerical schemes
  • Review the latest volumes of "Numerical Methods for Partial Differential Equations" for relevant case studies
USEFUL FOR

Mathematicians, engineers, and researchers involved in computational fluid dynamics, mathematical modeling, or anyone seeking to solve complex systems of partial differential equations numerically.

Suvadip
Messages
68
Reaction score
0
I need to solve the following system of equations for n=0,1,2 subject to the given initial and boundary conditions. Is it possible to solve the system numerically. If yes, please give me some idea which scheme I should use for better accuracy and how should I proceed. The coupled boundary conditions are challenging for me. Please help.

\frac{\partial C_n}{\partial t}-\frac{\partial^2 C_n}{\partial r^2}-\frac{1}{r}\frac{\partial C_n}{\partial r}=\beta n\, f(r,t)C_{n-1}+n(n-1)C_{n-2}
\frac{\partial \zeta_n}{\partial t}-\frac{\partial^2\zeta_n}{\partial r^2}-\frac{1}{r}\frac{\partial \zeta_n}{\partial r}=\beta n \,g(r,t)\zeta_{n-1}+n(n-1)\zeta_{n-2}C_n(0,r)=1 \quad\mbox{for}\quad n=0
=0 \quad\mbox{for}\quad n>0\zeta_n(0,r)=1 \quad\mbox{for}\quad n=0
\quad\quad\quad=0 \quad\mbox{for}\quad n>0\frac{\partial C_n}{\partial r}+\gamma C_n=0 \quad\mbox{at}\quad r=a
\frac{\partial C_n}{\partial r}=\kappa \frac{\partial \zeta_n}{\partial r} \quad\mbox{at}\quad r=b
C_n=\lambda\zeta_n \quad\mbox{at}\quad r=b
\frac{\partial \zeta_n}{\partial r}=0 \quad\mbox{at}\quad r=0
 
Last edited:
Physics news on Phys.org
You should check out the journal on Numerical Methods for Partial Differential Equations. It comes out in monthly in volumes that are the size of a 300 page textbook. I have volume 29 number 6 Nov 2013 and that may not be much of a help to you but there is bound to be a volume of interest.

You can also view the journal online at wilyonlielibrary.com/journal/num
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
0
Views
2K