Undergrad Object in or out of a circular field of view? (celestial coordinate system)

Click For Summary
In celestial coordinate systems, determining if an object with right ascension (RA) and declination (dec) is within a circular field of view of radius R requires a specific calculation. For small angular separations, the angular distance should be computed using the formula sqrt(δdec^2 + cos^2(dec)*δRA^2), rather than a simple Cartesian distance. This is important because the change in RA varies with declination, especially near the poles. The discussion also references a resource for further understanding of the formula and its derivation. Accurate calculations are essential for precise celestial navigation and observation.
vladivostok
Messages
8
Reaction score
0
TL;DR
Check that object with position RA and dec is within circle of radius R (in arcminute) ?
In celestial coordinate system (right ascension/declination), how to check if an object with position RA and dec is within a given circular field of view of radius R (in arcminutes) and centred at (0,0)?
R is small in this case so I assumed that I could compute the distance d of the object from the center as in cartesian coordinates: d = (RA^2+dec^2)^0.5 and check that d is less than R. Is that correct (at least for small angular separation) ?

Thanks !
 
Astronomy news on Phys.org
vladivostok said:
Summary:: Check that object with position RA and dec is within circle of radius R (in arcminute) ?

In celestial coordinate system (right ascension/declination), how to check if an object with position RA and dec is within a given circular field of view of radius R (in arcminutes) and centred at (0,0)?
R is small in this case so I assumed that I could compute the distance d of the object from the center as in cartesian coordinates: d = (RA^2+dec^2)^0.5 and check that d is less than R. Is that correct (at least for small angular separation) ?

Thanks !
Not really. A change δdec is the same size everywhere, but a change δRA gets smaller as you get nearer the poles. So for small changes, the angular separation between two objects is give by sqrt(δdec^2 + cos^2(dec)*δRA^2). Of course this won't make much difference if you are at (0,0), which is on the equator.
 
Thanks a lot and sorry for the late reply. Do you have any reference for the formula that you give? I'd like to see how it is derived.
Thanks again.
 
vladivostok said:
Thanks a lot and sorry for the late reply. Do you have any reference for the formula that you give? I'd like to see how it is derived.
Thanks again.
Here's a good link. The formula I gave is down near the bottom of the page. It also has more general formulae for when the differences of the coordinates are not small.
http://spiff.rit.edu/classes/phys373/lectures/radec/radec.html
 
  • Like
Likes vladivostok
Great, thanks !
 
UC Berkely, December 16, 2025 https://news.berkeley.edu/2025/12/16/whats-powering-these-mysterious-bright-blue-cosmic-flashes-astronomers-find-a-clue/ AT 2024wpp, a luminous fast blue optical transient, or LFBOT, is the bright blue spot at the upper right edge of its host galaxy, which is 1.1 billion light-years from Earth in (or near) a galaxy far, far away. Such objects are very bright (obiously) and very energetic. The article indicates that AT 2024wpp had a peak luminosity of 2-4 x...

Similar threads

  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 142 ·
5
Replies
142
Views
133K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K