Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

On a point of logic in the Higgs vs strong force origin of mass

  1. Dec 4, 2012 #1
    Recently, in the Scientific American blog
    http://blogs.scientificamerican.com...with-errors/?WT_mc_id=SA_CAT_physics_20121130
    the author criticizes Time Magazine for its science reporting, which of course is nothing new, but one of the criticisms is that Time's author wrote that without Higgs there wouldn't be any mass around (Sentence 1), and the blog counters by pointing out that most mass in the universe is due to the strong force, not Higgs. I am not sure that the blog's counter, although correct, actually destroys Time's contention, in that without Higgs, the elementary particles would not have mass, including the gluons and quarks upon which the strong force acts -- and therefore the question is whether the strong force could act on massless particles. If not, then there would be nothing around (without Higgs) for the strong force to act on, and hence nothing would have mass. (Whereupon Time's contention would be correct, even if it does give the wrong impression.)
    I would be happy to be corrected on this; I would not want to be seen as a defender of Time magazine.
     
  2. jcsd
  3. Dec 4, 2012 #2

    Bill_K

    User Avatar
    Science Advisor

    The Higgs is an essential part of nature, and so asking what nature would be like without it is a bit meaningless. However regarding the strong force, its action doesn't depend on quarks and gluons having mass. Gluons, in fact, ARE massless. And the two most common quarks, the up and down, nearly so.
     
  4. Dec 4, 2012 #3
    just a question:why not photon interact with higgs field to get a mass?
     
  5. Dec 4, 2012 #4

    Bill_K

    User Avatar
    Science Advisor

    In a single sentence, because the Higgs field is electrically neutral. :smile:

    In more detail... electroweak theory has the symmetry group SU(2) x U(1) (Isospin T x Hypercharge Y) with four generators, and corresponding to each generator is a gauge boson (the W's, the Z and the photon).

    The Higgs field breaks this symmetry by acquiring a vacuum expectation value. Each symmetry transformation that is broken results in a mass for the corresponding boson. But if the vacuum is still left invariant by some subgroup of gauge transformations, the gauge bosons associated with that subgroup will remain massless.

    The generator corresponding to electric charge is Q = T3 + Y/2. So we make the simplest choice and assume the Higgs field to be an isospin doublet, T = 1/2, with hypercharge Y = 1, and assume that its vacuum expectation value φ0 = (0 v) has only a T3 = -1/2 component.

    Then Qφ0 = (T3 + Y/2)φ0 = 0, the vacuum is invariant under electromagnetic gauge transformations ("electrically neutral"), and the photon remains massless!
     
  6. Dec 4, 2012 #5
    Thanks very much, Bill K. That helped me understand these issues quite a lot.
    (If you ever quit whatever profession you are in, you should go into popular science writing. Most explanations about Higgs etc. are either oversimplified or too technical, with nothing in between for those with a moderate physics background.)
     
  7. Dec 5, 2012 #6
    with neutrino?
     
  8. Dec 6, 2012 #7
    what has this to do with mass?Even U(1) gauge symmetry is not broken,how can one conclude that photon is massless?
     
    Last edited: Dec 6, 2012
  9. Dec 6, 2012 #8

    Bill_K

    User Avatar
    Science Advisor

    The gauge symmetry is a local symmetry, a position-dependent phase change, ψ → eiα(x)ψ, which we want to be a symmetry of the Lagrangian. But the Lagrangian contains derivative terms, so we must prevent derivatives of α(x) from appearing by using a modified derivative: Dμ = ∂μ - ieAμ where Aμ is the gauge field and transforms as Aμ → Aμ + (1/e)∂μα.

    Then the gauge field must be massless because a mass term m2AμAμ would not be gauge invariant.
     
  10. Dec 6, 2012 #9
    I already know it, defining covariant derivative gives the required form,also used in non abelian gauge theory.I just want to know why spontaneous symmetry braking does not give mass to photons.(or only something like goldstone bosons appear?)
     
  11. Dec 7, 2012 #10

    samalkhaiat

    User Avatar
    Science Advisor

    In [itex]SU(2)_{L}\times U(1)_{Y}[/itex] theory, we have two coupling constants [itex]g_{L}[/itex] and [itex]g_{Y}[/itex], and four MASSLESS gauge fields: [itex]W_{\mu}^{a}, \ a = 1,2,3[/itex] and [itex]B_{\mu}[/itex]. We can redefine these fields by introducing two electrically charged fields
    [tex]W^{\pm}_{\mu} = \frac{1}{\sqrt{2}}( W^{1}_{\mu} \mp i W^{2}_{\mu}),[/tex]
    and two neutral fields
    [tex]Z_{\mu} = W^{3}_{\mu}\cos \theta - B_{\mu} \sin \theta[/tex]
    [tex]A_{\mu} = W^{3}_{\mu} \sin \theta + B_{\mu} \cos \theta[/tex]
    We still have no photon in here, because the gauge group is not [itex]U(1)_{em}[/itex], all fields are still massless and (more important) the two couplings [itex]g_{L}[/itex] and [itex]g_{Y}[/itex] are unrelated.
    To break [itex]SU(2)_{L}\times U(1)_{Y}[/itex] down to [itex]U(1)_{em}[/itex], we need to introduce a set of scalar fields [itex]\Phi[/itex] which has [itex]U(1)_{em}[/itex] invariant non-zero vacuum expectation value [itex]< \Phi > = v[/itex], i.e. it vanishes under the action of the [itex]U(1)_{em}[/itex] generator (the electric charge)
    [tex]Q_{em}< \Phi > = 0. \ \ \ \ (1)[/tex]
    Next, we introduce a small perturbation [itex]H(x)/ \sqrt{2}[/itex] around the VEV of the scalar field [itex]< \Phi >[/itex]. This will provides masses to ALL four gauge fields [itex]W^{\pm}_{\mu}, Z_{\mu}[/itex] and [itex]A_{\mu}[/itex]. So, in order to satisfy eq(1) one of the neutral fields must remain massless, so that it can be identified with the gauge field of the (unbroken) [itex]U(1)_{em}[/itex] group, i.e. the photon. This happens for [itex]A_{\mu}[/itex] provided that we CHOOSE the couplings such that
    [tex]g_{Y} = g_{L} \sin \theta[/tex]

    Sam
     
  12. Dec 8, 2012 #11
    oh nice way,can I get some reference for it.thank you, sam.
     
  13. Dec 8, 2012 #12
    Surely the couplings have already already determined by nature/more fundamental physics we haven't yet discovered. Isn't the real point that, for the field configuration of the GWS theory, there exists a θ for which the Aμ remains massless?

    We measure its value experimentally.
     
  14. Dec 8, 2012 #13

    samalkhaiat

    User Avatar
    Science Advisor

    Yes, that is true. In a self-consistence theory, that does not change the fact that the photon was introduced by that particular choice of the [itex]SO(2)[/itex] parameter.

    Sam
     
  15. Dec 8, 2012 #14

    samalkhaiat

    User Avatar
    Science Advisor

    All textbooks on Weinberg-Salam theory go through the details. After introducing the perturbation [itex]H(x)/ \sqrt{2}[/itex] and performing local gauge transformation on all the fields in the theory, the rest is just an algebra. The vector mesons masses are contained in the [itex]|D_{\mu}\Phi |^{2}[/itex] part of the Lagrangian:
    [tex]
    D_{\mu}\Phi = \left( \partial_{\mu} + i \frac{g_{L}}{2}\tau_{a} W^{a}_{\mu} - i \frac{g_{Y}}{2}B_{\mu} \right) \left( \begin{array}{c} 0 \\ (v + H/ \sqrt{2}) \end{array} \right)
    [/tex]
    [tex]
    V( \Phi ) = - \mu^{2} H^{2}(x) + \mathcal{O}^{3}(H) + \mathcal{O}^{4}(H) + \mbox{const.} \ \ \ (1)
    [/tex]
    So,
    [tex]
    ( D_{\mu}\Phi )^{\dagger}( D^{\mu} \Phi ) = \frac{1}{2} ( \partial_{\mu}H )^{2} + \frac{g_{L}^{2}v^{2}}{4} \left[ ( W_{\mu}^{1})^{2} + (W_{\mu}^{2})^{2} + ( W_{\mu}^{3} - \frac{g_{Y}}{g_{L}} B_{\mu})^{2}\right] + \mbox{interaction terms} \ (2)
    [/tex]
    From (1) and (2) we read off the mass of the Higgs field: [itex]M_{H}= \sqrt{2 \mu^{2}}[/itex].
    Now, we write eq(2) in terms of the fields [itex]W^{\pm}_{\mu}, Z_{\mu}[/itex] and [itex]A_{\mu}[/itex] given in my previous post. The relevant terms become (I):
    [tex]
    \frac{g_{L}^{2}v^{2}}{4}[ ( W_{\mu}^{1})^{2} + ( W_{\mu}^{2})^{2}] = \frac{g_{L}^{2}v^{2}}{2} W_{\mu}^{+} W^{\mu -}
    [/tex]
    This gives the mass term for the [itex]W^{\pm}[/itex] bosons: [itex]M_{W}= \frac{g_{L}v}{\sqrt{2}}[/itex]
    And (II):
    [tex]
    \frac{g_{L}^{2}v^{2}}{4}( W_{\mu}^{3} - \frac{g_{Y}}{g_{L}}B_{\mu} )^{2} = \frac{g_{L}^{2}v^{2}}{4}[( \sin \theta - \frac{g_{Y}}{g_{L}}\cos \theta ) A_{\mu} + ( \cos \theta + \frac{g_{Y}}{g_{L}} \sin \theta ) Z_{\mu}]^{2}
    [/tex]
    Now, if we make the choice
    [tex]g_{Y} = g_{L} \tan \theta ,[/tex]
    the above reduces to
    [tex]
    (0) A_{\mu}^{2} + (0) A_{\mu}Z^{\mu} + \frac{g_{L}^{2}v^{2}}{2 \cos^{2}\theta}Z_{\mu}^{2}.
    [/tex]
    This means that the [itex]A_{\mu}[/itex] is massless; there is no e-m interaction between the A and the Z fields and the mass of the neutral boson Z is given by [tex]M_{Z}= \frac{vg_{L}}{\sqrt{2}\cos \theta} = \frac{M_{W}}{\cos \theta}.[/tex]

    Sam
     
  16. Dec 8, 2012 #15

    samalkhaiat

    User Avatar
    Science Advisor

    CORRECTION: The correct form is
    [tex]g_{Y} = g_{L} \tan \theta .[/tex]
     
  17. Dec 8, 2012 #16

    K^2

    User Avatar
    Science Advisor

    Until this point θ is arbitrary, is it not? So is it fair to say that we choose θ in our definition of the A field to satisfy this relation and give us massless photon? Or am I missing something more fundamental here?
     
  18. Dec 8, 2012 #17

    samalkhaiat

    User Avatar
    Science Advisor

    No, you are not missing anything. This is what I said in post #13. The point is this: in the unbroken [itex]SU(2)_{L}\times U(1)_{Y}[/itex] that choice of [itex]\theta[/itex] does not give you photon. Only when [itex]<\Phi >:SU(2)_{L}\times U(1)_{Y}\rightarrow U(1)_{em}[/itex], we identify the A-field with the massless photon.

    Sam
     
  19. Dec 9, 2012 #18
    so it seems that coupling constants are chosen in a way so as not to give photon a mass.zero mass of photon must be confirmed by some other ways like recieving how much valid is inverse square law,or directly giving a limit based on some approach as used by schrodinger etc.right?
     
  20. Dec 9, 2012 #19
    The coupling constants are parameters of the theory. Whatever their values, there will exist a value of θ that yields a massless photon.

    They are also related to the electromagnetic coupling constant [itex]e[/itex] by the relation

    [itex]e = g_L\ sin (\theta) = g_Y\ cos (\theta)[/itex]

    So by measuing [itex]e[/itex] and [itex]\theta[/itex] we can immediately determine their values.
     
  21. Dec 9, 2012 #20

    naima

    User Avatar
    Gold Member

    this reminds me a previous thread where I defended the idea that the electric charge (as g and g') was defined before symbreaking. (and that theta value was given before it)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: On a point of logic in the Higgs vs strong force origin of mass
Loading...