MHB Operations on Sets: Explained & Examples

  • Thread starter Thread starter bergausstein
  • Start date Start date
  • Tags Tags
    Operations Sets
bergausstein
Messages
191
Reaction score
0
please help me understand what my book says:

If set A has only one element a, then $\displaystyle A\,x\,B\,=\, \{\left(a,\, b\right)\,|\,b\,\epsilon\,B\}$, then there is exactly one such element for each element from B.

can you explain what it means and give some examples. thanks! :)
 
Mathematics news on Phys.org
Re: Operations on set

From Wikipedia:

In mathematics, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B.

For example, if the cardinality of set $A$ is one, where $A=\{a\}$ and we have a set $B$ of cardinality $n$, i.e., $B=\{b_1,b_2,b_3,\cdots,b_n\}$ then:

$$A\,\times\,B=\{(a,b_1),(a,b_2),(a,b_3),\cdots,(a,b_n),\}$$
 
Cartesian products get their name from the prototypical example, the Cartesian plane, which is the Cartesian product of two orthogonal lines.

It's easier to see what is going on if we consider a Cartesian product of two finite sets, say:

A = a bag of red marbles,
B = a bag of green marbles.

Suppose we want "all possible pairs" of marbles, and A has 3 marbles, and B has 4 marbles. We can label these r1,r2,r3 (for the red marbles) and: g1,g2,g3,g4 (for the green marbles). Then the set of all possible pairs looks like this:

(r1,g1) (r1,g2) (r1,g3) (r1,g4)

(r2,g1) (r2,g2) (r2,g3) (r2,g4)

(r3,g1) (r3,g2) (r3,g3) (r3,g4)

Laid out like this, it's clear we have 3*4 = 12 pairs in all. And, in general:

[math]|A \times B| = |A|\cdot|B|[/math]

so, if A and B are sets of 1 element each, their Cartesian product has 1*1 = 1 element (only one possible choice for the "first coordinate", and only one possible choice for the "second coordinate").
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
2K
Replies
9
Views
2K
Replies
21
Views
6K
Replies
3
Views
2K
Replies
5
Views
2K
Back
Top