Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I'm struggling with the second quantization formalism. I'd like to derive the hamiltonian of a system with non-interacting particles

[tex]\hat{H}=\int dx\,a(x)^\dagger \left[\frac{\hat{P}}{2m}+V(x)\right]a(x),[/tex]

where [tex]a(x) = \hat{\Psi}(x)[/tex].

I know the second quantized representation of a single-particle operator [tex]\hat{O}[/tex] which is diagonal in the basis [tex]\{|\alpha\rangle\}[/tex]:

[tex]\hat{O}=\sum_i o_{\alpha_i} a_{\alpha_i}^\dagger a_{\alpha_i}[/tex]

My idea was, as a first step, to derive the expression of the linear momentum operator:

[tex]\hat{P}=\sum_i p_{p_i} a_{p_i}^\dagger a_{p_i} =\sum_i \int dx\, \langle x|p_i\rangle a^\dagger(x) \int dx\, \langle p_i|x\rangle a(x) ??[/tex]

The above is probably wrong (and I don't know how to proceed in order to derive an expression which is of similar form as [tex]\hat{H}[/tex])

Any help is much appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Operator in second quantization

**Physics Forums | Science Articles, Homework Help, Discussion**