Mike Holland
- 114
- 1
Excuse me butting in here, but I have a big concern about the O-S calculation. You all keep agreeing that it applies to a spherical symmetric collapsing mass. But when you think about how fast a pulsar spins, in general a near-BH mass would spin very much faster, and at best we would have an oblate spheroid. In fact, what I have in mind would look something like an LP record! I realize that the end result BH would be spherical, but I don't see how it can be spherical beore reaching that stage except in very idealised theory.
If this picture is correct, then mass in the polar direction would have very little distance to fall, but there would be very little of it, while the angular momentum of the equatorial regions would delay the collapse significantly. Is this taken into account in any of the calculations that have been done?
A further note - such a flat spinning object would qualify as an axi-symmetric collapse as described by Saul Teukolsky, in which one could at some stage have a naked singularity before the Black Hole forms completely.
I would like to hear your comments.
Mike
If this picture is correct, then mass in the polar direction would have very little distance to fall, but there would be very little of it, while the angular momentum of the equatorial regions would delay the collapse significantly. Is this taken into account in any of the calculations that have been done?
A further note - such a flat spinning object would qualify as an axi-symmetric collapse as described by Saul Teukolsky, in which one could at some stage have a naked singularity before the Black Hole forms completely.
I would like to hear your comments.
Mike