harrylin said:
[Addendum]: in fact I assumed the Voyager to circle for some years in orbit, thus ticking slower
Doing that just adds a long period of time where Voyager can exchange light signals with Earth before it falls in. There are no stable orbits inside r = 6M (three times the horizon radius), and no orbits at all, even unstable ones that have to constantly be maintained by rocket thrust, inside r = 3M (1.5 times the horizon radius). Time dilation at those altitudes is not very great by relativisitic standards, and anyway, as I said, the period of orbiting is irrelevant to the central question we're addressing.
harrylin said:
What could be relevant for this discussion (although likely also not) is your (t1,s1) = (40.99, 41.99). I don't know how you get that 1 year difference, is that just a coincidence?
As I said, I wasn't calculating exact numbers, just trying to qualitatively describe the general pattern; so if any numbers happen to match something else, it's just a coincidence. I won't have time to do any detailed calculations until after this weekend.
harrylin said:
Now I'll study the rest; the issue is really (t1,s1)= (41.3, 43).
I do think that Earth must get a signal back (41.3, 41.9999999999) according to O-S-1939.
O-S 1939 is consistent with everything I said up to (t1, s1, UTC) -> (41, 42, infinity) (qualitatively speaking--as I said, I haven't done detailed calculations of the exact numbers). After that point O-S 1939 doesn't cover the scenario at all; they don't say it's possible and they don't say it's impossible. They simply leave their analysis incomplete. (Their analysis has been completed since--for example, it's in MTW and other GR textbooks--and the completion of the analysis is what I've used to generate the qualitative behavior I illustrated.)
O-S do say, however, that when the surface of the infalling matter reaches the horizon radius (what they call r_0)--this corresponds to Voyager's clock reaching tau = 42--outgoing light can no longer escape (hence the infinity as the limit of the UTC times above as t1, s1 -> 41, 42). This seems like a pretty clear indication that *if* O-S had continued their analysis and discovered that points on Voyager's worldline with tau > 42 could exist, they would find (as modern analyses have found) that those points would not be able to send light signals back to Earth; since if outgoing light can't escape from the event where tau = 42, at r = r_0, any event with tau > 42 must have r < r_0 (since r > r_0 would require Voyager to move faster than light from the tau = 42 event, and even r = r_0 would require Voyager to move at the speed of light from the tau = 42 event), and would also not be able to send signals back to Earth (since those signals would also have to move faster than light).
If you think otherwise, please give specific references from the paper. I've read it through now and what I've said about the model in that paper and its limitations is based on what I've read.
A final note about the 20 light-year distance: that would just add an irrelevant constant to every s1 value and every UTC value. Instead of triples like (40, 40.3, 200), you would get, for example, (40, 40.3 + 20 years, 200 + 20 years); and instead of triples like (40.99, 41.99, 1E1000), you would get, for example, (40.99, 41.99 + 20 years, 1E1000 + 20 years), which works out to a very good approximation to (40.99, 41.99 + 20 years, 1E1000). So the 20 years quickly becomes negligible compared to the huge increase in UTC values compared to the other two.
Rather than add 20 years to the s1 and UTC values as above, I chose to ignore the 20 light year distance and assume that Earth was much closer to the hole. But I can put back in the 20 light year distance when I do the detailed calculations if you think it's really important (I don't think it is, since it doesn't change the qualitative behavior).