I found a claim in a paper (BSSA, Vol 81, No. 6: "A Waveform Correlation Method for Identifying Quarry Explosions", By D.B. Harris) concerning finding filter coefficients. The statement is given without proof. I cannot locate a reference or theorem for the following, and have not been able thus far to justify this claim quantitatively.(adsbygoogle = window.adsbygoogle || []).push({});

Suppose:

\begin{equation}

\mathbf{v}(t) = \displaystyle \sum_{k=1}^{N} \int_{-T}^{T} \! a_{k}(t-s) \mathbf{u}_{k}(s) \, ds,

\end{equation}

Then maximizing the correlation coefficient over filter coefficients a:

\begin{equation}

\rho(a) = \max_{a} \frac{\left\langle {\mathbf{u}(t), \mathbf{v}(t) } \right\rangle} { \sqrt{\left\langle {\mathbf{u}(t), \mathbf{u}(t) } \right\rangle \, \left\langle {\mathbf{v}(t), \mathbf{v}(t) } \right\rangle}}

\end{equation}

Is equivalent to:

\begin{equation}

\min_{a} \int_{-T}^{T} \! \parallel \mathbf{u}(t) - \mathbf{v}(t) \parallel^{2} \, dt,

\end{equation}

Where the inner product is defined by:

\begin{equation}

\left\langle {\mathbf{u}(t), \mathbf{v}(t) } \right\rangle = \int_{-T}^{T} \! {\mathbf{u}(t)}^{T} \mathbf{v}(t) \, dt,

\end{equation}

Qualitatively, this makes sense, of course. I initially attempted to prove this in the frequency domain by making use of the convolution theorem, to reduce the problem into one that looks similar to a Rayleigh quotient. This effort did not yield the correct equations. Turning the community was my last resort.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Optimal Filter Coefficients: Correlation versus Least Squares

Can you offer guidance or do you also need help?

**Physics Forums | Science Articles, Homework Help, Discussion**