Optimize f(x,y,z) = 2x + 2y + 2z subject to constraints g(x,y,z) = x(adsbygoogle = window.adsbygoogle || []).push({}); ^{2}- y^{2}- z^{2}- 1 = 0 & h(x,y,z) = x^{2}+ y^{2}+ z^{2}- 17 = 0.

I found L_{x}= 2 + 2[tex]\lambda[/tex]x - 2[tex]\mu[/tex]x = 0, L_{y}= 2 + 2[tex]\lambda[/tex]y - 2[tex]\mu[/tex]y = 0 & L_{z}= 2 + 2[tex]\lambda[/tex]z - 2[tex]\mu[/tex]z = 0

I'm just asking how to use L_{x}, L_{y}& L_{z}to eliminate [tex]\lambda[/tex] & [tex]\mu[/tex] to get the critical points.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Optimize f(x,y,z) = 2x + 2y + 2z

**Physics Forums - The Fusion of Science and Community**