I Why f is no longer a function of x and y ?

  • Thread starter Thread starter Adesh
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion centers on the concept of functions of multiple variables, specifically why a function represented as f(x, y) may not be considered a function of x and y when restrictions are applied to their values. It is clarified that even with these restrictions, f remains a function of x and y, but the derivatives may not behave as expected due to the nature of the variables involved. The distinction between dummy integration variables (like x' and y') and the actual variables (x and y) is emphasized, highlighting that the derivatives with respect to the unprimed variables can be zero if the function does not depend on them. Overall, the conversation explores the nuances of variable dependence in mathematical functions and integrals. Understanding these distinctions is crucial for correctly interpreting mathematical expressions and their derivatives.
  • #31
PeroK said:
The same difference as differentiating with respect to ##y_1## and ##y_2## in the above examples.
That solves my whole problem. Thank you so much.
 
Physics news on Phys.org
  • #32
Adesh said:
So, what’s the difference between differentiating with respect to ##x## and ##x’## ?
In that response I was trying to illustrate to you the way we think of axes, but:
Define ##\vec a=f(x)\vec e_1=(f(x), 0)## and ##\vec c=g(x')\vec e_1=(g(x'),0)##. You know how to do differentiation on vectors as you are reading Griffith's book, so what do you think?
Adesh said:
That solves my whole problem. Thank you so much.
I think the main point that you need to remember is to think of the axes as the set of real numbers. The function you have of both ##x## and ##x'## who are on the same "axis" can be seen as ##\vec a = f(x, x')\vec e##.
 
  • Like
Likes Adesh
  • #33
On #4
\nabla\times J=[\frac{\partial J_y(x',y',z')}{\partial z}-\frac{\partial J_z(x',y',z')}{\partial y}]\hat x + ...
is zero.
 
  • Like
Likes PeroK

Similar threads

  • · Replies 8 ·
Replies
8
Views
593
  • · Replies 7 ·
Replies
7
Views
2K
Replies
14
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K