Optimizing with Derivatives I think

  • Thread starter Thread starter michaeldw
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
The discussion revolves around optimizing the cost of retrieving a bit from a base on the moon, considering the constraints of distance and launch angle. The problem involves calculating the optimal launch angle to minimize costs associated with moving a rover and changing the launch angle. The cost function is defined based on the distance the rover travels and the angle adjustment needed for the launcher. The user has derived equations for both the constraint and the cost optimization but is seeking assistance with finding the first derivative to identify extrema. The focus is on applying calculus to determine the optimal settings for minimizing expenses in this scenario.
michaeldw
Messages
7
Reaction score
0

Homework Statement


You're on the moon and you need a bit from the base 900 feet away so you can continue your experiment. The base has a roover/launcher used for retrieving the bit. The roover can move a max dist of 600 feet. The launcher is controlled by angle. At this time the angle is inclined at 70 degrees. It cost $375 per foot to move the roover, and $20,000 per degree to change the launch angle. What are the optimal settings (what angle should I launch from where) to minimize cost?

acceleration due to grav on moon = 5.31 ft/s^2
initial velocity of bit leaving launcher = 75 ft/s

Homework Equations



R = V^2(sin(2x))/g ; where R = total distance, V= Velocity, x= theta (some angle) and g= gravitational acceleration.

The Attempt at a Solution


I made an equation for constraint and pne for the optimaization.

Constraint:
900 = [[(75^2)*sin(2x)]/5.31]+ y ; where y = distance roover moves and x = theta

optimization
minCost = [20000*|70-x|]+2y(375) ; |...| = absolute value, 2y because the roover has to return to base.

I remember doing problems like this in HS but I need help with this one. I solved for y in the constraint equation, then substiituted it in for y in the optimization equation. Here's what I got:

minCost= [-7.945*(10^5)*sin(2x)+675000+20000*|x-70|]

Now if I am correct I get the 1st derivative of this and I will get the extrema or something like that which will be the optimal angle. Then I plug that into the first equation and get y...

But how do I find the first derivative. This might not even be the right method so please help thatnks.
 
Physics news on Phys.org
whoops wrong section
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K