Order of an element in ##\mathbb{Z}_n##

  • Context: Undergrad 
  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Mathematics
Click For Summary

Discussion Overview

The discussion revolves around the concept of the order of an element in the group ##\mathbb{Z}_n##, with participants exploring various examples and calculations related to specific integers and their orders in different cyclic groups. The scope includes mathematical reasoning and exploratory discussions on group theory.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant describes their understanding of the order of elements in groups, providing calculations for the order of ##3## in ##\mathbb{Z}_4## and ##12## in ##\mathbb{Z}_{20}##.
  • Another participant presents a method involving positive integers to express the order of ##12## in ##\mathbb{Z}_{20}##, suggesting a relationship between the integers involved.
  • Further calculations are provided for the orders of other elements, such as ##6## in ##\mathbb{Z}_{12}## and ##16## in ##\mathbb{Z}_{24}##, leading to a least common multiple (lcm) calculation.
  • Some participants share their methods for calculating orders in products of cyclic groups, specifically ##\mathbb{Z}_2 \times \mathbb{Z}_2## and ##\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2##, discussing the resulting elements and their orders.
  • There are corrections and clarifications regarding notation and the distinction between elements and sets in the context of cyclic groups.

Areas of Agreement / Disagreement

Participants express various methods and calculations for determining the order of elements, but there is no consensus on a single approach or resolution of the differing methods presented.

Contextual Notes

Some calculations depend on specific assumptions about the integers involved, and there are unresolved mathematical steps in the reasoning provided by participants.

chwala
Gold Member
Messages
2,828
Reaction score
425
TL;DR
See attached...
1691149676101.png


Doing some self study here; my understanding of order of an element in a group is as follows:
Order of ##3## in ##\mathbb{z_4}## can be arrived by having, ##3+3+3+3=12≡0##
likewise, the order of ##12## in ##\mathbb{z_{20}}## can be arrived by
##12+12=24 ≡4≠0##
##12+12+12=36≡16≠0##
##12+12+12+12=48≡18≠0##
##12+12+12+12+12=60≡0⇒12^5=0##
therefore the order of ##12## in ##\mathbb{z_{20}}=5##. Any insight is welcome.
 
Last edited:
Physics news on Phys.org
Quicler is, for positive integers n and m, <br /> 12n - 20m = 4(3n - 5m) = 0\quad\Leftrightarrow\quad (n,m) = (5k,3k), k \in \mathbb{N} and the order of 12 in \mathbb{Z}_{20} is found by taking k = 1.
 
  • Informative
Likes   Reactions: chwala
...This is a continuation
1691152421209.png
This part is quite clear... that is:
##3## in ##\mathbb{z_4}=4##
##6## in ##\mathbb{z_{12}}=2##
##12## in ##\mathbb{z_{20}}=5##
##16## in ##\mathbb{z_{24}}=3##
and
lcm ##(4,2,5,3)=60##
 
pasmith said:
Quicler is, for positive integers n and m, <br /> 12n - 20m = 4(3n - 5m) = 0\quad\Leftrightarrow\quad (n,m) = (5k,3k), k \in \mathbb{N} and the order of 12 in \mathbb{Z}_{20} is found by taking k = 1.
Looks easy to apply, then for
##16## in ##\mathbb{z_{24}}## we shall have,
##16n-24m=8(2n-3m)=0## ...
##(3k,2k)##, on taking ##k=1## we shall then have the required ##n=3##.
 
chwala said:
TL;DR Summary: See attached...

View attachment 330097

Doing some self study here; my understanding of order of an element in a group is as follows:
Order of ##3## in ##\mathbb{z_4}## can be arrived by having, ##3+3+3+3=12≡0##
likewise, the order of ##12## in ##\mathbb{z_{20}}## can be arrived by
##12+12=24 ≡4≠0##
##12+12+12=36≡16≠0##
##12+12+12+12=48≡18≠0##
##12+12+12+12+12=60≡0⇒12^5=0##
therefore the order of ##12## in ##\mathbb{z_{20}}=5##. Any insight is welcome.
Let me have this here for future reference...my way of attempting,
##\mathbb{z_3} ×\mathbb{z_4}=(0,1,2) ×(0,1,2,3)##

Giving us,

##(0,0), (0,1), (0,2), 0,3)##
## (1,0), (1,1), (1,2), (1,3)##
##(2,0), (2,1), (2,2), (2,3)##
the order is ##12##.
 
For ##\mathbb{z_2} ×\mathbb{z_2}×\mathbb{z_2}## ...i am going through this link

https://quizlet.com/explanations/qu...ups-of-2-e8129f84-d882-40fe-baab-e8c7b00823ab

My way of doing it,

##\mathbb{z_2} ×\mathbb{z_2}=(0,1)×(0,1)=(0,0), (0,1), (1,0), (1,1)##

...

##\mathbb{z_2} ×\mathbb{z_2}×\mathbb{z_2}=[(0,0), (0,1), (1,0), (1,1)]×[(0,1)]##

##=(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)## and ##(1,1,1)##

order is ##8##.
Insight is welcome.
 
Last edited:
chwala said:
For ##\mathbb{z_2} ×\mathbb{z_2}×\mathbb{z_2}## ...i am going through this link

https://quizlet.com/explanations/qu...ups-of-2-e8129f84-d882-40fe-baab-e8c7b00823ab

My way of doing it,

##\mathbb{z_2} ×\mathbb{z_2}=(0,1)×(0,1)=(0,0), (0,1), (1,0), (1,1)##
You should distinguish elements and sets.
$$\mathbb{Z}_2 \times\mathbb{Z}_2=\{0,1\}\times \{0,1\}=\{(0,0), (0,1), (1,0), (1,1)\}$$
and write these cyclic groups with a capital Z, and the index outside of the brackets:
Code:
\mathbb{Z}_p

chwala said:
...

##\mathbb{z_2} ×\mathbb{z_2}×\mathbb{z_2}=[(0,0), (0,1), (1,0), (1,1)]×[(0,1)]##
Yes. We have three direct factors here, which are triplets, so
\begin{align*}
\mathbb{Z}_2^3&=\mathbb{Z}_2 \times\mathbb{Z}_2\times\mathbb{Z}_2\\&=\{0,1\}\times \{0,1\}\times \{0,1\}\\&=\{(0,0,0), (0,1,0), (1,0,0), (1,1,0),(0,0,1), (0,1,1), (1,0,1), (1,1,1)\}
\end{align*}
These direct products are associative so it does not matter where or even whether you insert an order.
chwala said:
##=(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)## and ##(1,1,1)##

order is ##8##.
Insight is welcome.

Edit: "You should distinguish elements and sets."

I should do that, too. I corrected the notation (from ##\{(0,1)\}## to ##\{0,1\}## for the single group ##\mathbb{Z}_2##).
 
Last edited:
  • Like
Likes   Reactions: Mark44 and chwala
fresh_42 said:
You should distinguish elements and sets.

fresh_42 said:
and write these cyclic groups with a capital Z, and the index outside of the brackets:
Yes to both...
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
1K