Oscillator Differentials: What's a physical meaning of complex part of the solution for coordinate change of the anharmonic oscillator?

AI Thread Summary
The discussion revolves around the complex part of the solution for coordinate changes in anharmonic oscillators, with participants seeking clarity on its physical meaning. One user expresses confusion about the original question and notes that the linked answer does not adequately address the complex solution or anharmonicity. Another user describes how mapping the state onto the complex plane results in a helical graph that tapers exponentially for unforced oscillators. There is a repeated request for a detailed explanation of the mathematical equations involved. The conversation highlights a need for clearer communication and understanding of the complex dynamics of oscillators.
DifferentialGalois
Messages
68
Reaction score
25
Homework Statement
What's a physical meaning of, for example, complex part of the solution for coordinate change of the anharmonic oscillator?
Why after substitute (for diff. equation solve) for real x we can earn ##x = Re(z) + iIm(z)##? Is it because of substitutio?
Relevant Equations
##x = Re(z) + iIm(z)##
##x(t)=e^{i\alpha t}##
##x(t) = A e^{i \alpha_1 t} + B e^{i \alpha_2 t}##
I don't understand what the question means, and the answer is provided here: https://physics.stackexchange.com/a/35821/222321
Could someone provide a comprehensive one-by-one explanation.
 
Physics news on Phys.org
The discussion at that link does not, as far as I can see, provide a physical meaning to the complex solution. Neither does it address anharmonicity, so I assume you mean just a standard damped (maybe forced) oscillator.
If we map the state onto the complex plane, the graph as a function of time (an axis normal to that plane) becomes a helix, tapering exponentially in the case of unforced. I would think this could be realised in a physical system.
 
bump
 
DifferentialGalois said:
bump
Why are you bumping your thread and not replying to @haruspex ?
 
berkeman said:
Why are you bumping your thread and not replying to @haruspex ?
i need an explanation to the mathematical equations.
 
DifferentialGalois said:
i need an explanation to the mathematical equations.
I thought I saw a pretty good explanation in the post by @haruspex -- Which part of what he wrote did you not understand?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top