Hi,(adsbygoogle = window.adsbygoogle || []).push({});

i thought of a paradox that i'm not sure i can resolve for myself.

You have a 1-dim potential well of length L. You measure a particle to be within [tex]x=L/2\pm \sigma[/tex] with equal probability. Assume sigma is very tiny. After a short time [tex]\Delta t[/tex] the wavefunction has evolved to be non-zero even at [tex]x=L/3[/tex], say (with tiny probability). But if a measurement of the position of the particle actually yielded [tex]x=L/3\pm \sigma'[/tex], as unlikely it may be, wouldn't relativity be violated, in that the particle would have had to travel with velocity [tex] \frac{L/6}{\Delta t} [/tex], which for short enough [tex] \Delta t [/tex] might in fact be larger than the velocity of light?

My guess would be, that this is making too much of non-relativistic quantum mechanics and that it would all work out if instead of speaking about velocity v one talked about the momentum p, which might become as large as necessary to satisfy the uncertainty relation, without making the velocity larger than c (in the same way as the momentum of a constantly accelerated particle in relativity can become as large as necessary without the velocity increasing very much).

Is this the resolution? If yes, is it possible to make a more convincing argument for that?

If no, what is the resolution?

Thanks

Jeremy

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Paradox seemingly violating relativity

**Physics Forums | Science Articles, Homework Help, Discussion**