Partial Derivatives of the cosine rule.

Click For Summary
SUMMARY

The discussion focuses on calculating the partial derivatives of the cosine rule, specifically for a triangle with sides a = 13.5m, b = 24.6m, and angle θ = 105.6 degrees. The cosine rule is defined as c² = a² + b² - 2ab cos(θ), leading to the need for partial derivatives of c with respect to a, b, and θ. Participants confirm that the values of a, b, and θ are necessary for calculating c, but not for deriving the partial derivatives. The application of the chain rule is emphasized for accurate differentiation.

PREREQUISITES
  • Understanding of the cosine rule in trigonometry
  • Knowledge of partial derivatives
  • Familiarity with the chain rule in calculus
  • Basic understanding of trigonometric functions, specifically cosine
NEXT STEPS
  • Study the application of the chain rule in calculus
  • Learn how to differentiate trigonometric functions, including derivatives of sine and cosine
  • Explore examples of partial derivatives in multivariable calculus
  • Investigate the geometric interpretation of the cosine rule and its applications
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who require a solid understanding of partial derivatives and the cosine rule for problem-solving in triangular geometry.

Kris1
Messages
29
Reaction score
0
Partial Derivatives

Hi all I was wondering if anyone could help me with this problem. I have a triangle that has a = 13.5m, b = 24.6m c, and theta = 105.6 degrees.

Can someone remind me of what the cosine rule is?

Also (my question is here)

From the cosine rule i need to find:
  • the partial derivative of c with respect to a?
  • the partial derivative of c with respect to b?
  • the partial derivative of c with respect to theta?

How would i go about finding these partial derivatives for these? Do I need to know what the cosine rule is and what the value of c is?

How to find the partial derivatives?

Any help will be appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
Kris said:
Hi all I was wondering if anyone could help me with this problem. I have a triangle that has a = 13.5m, b = 24.6m c, and theta = 105.6 degrees.

Can someone remind me of what the cosine rule is?

Also (my question is here)
From the cosine rule i need to find


  • the partial derivative of c with respect to a?
    the partial derivative of c with respect to b?
    the partial derivative of c with respect to theta?

How would i go about finding these partial derivatives for these? Do I need to know what the cosine rule is and what the value of c is?

Any help will be appreciated

Welcome to MHB, Kris! :)

The cosine rule is
$$c^2=a^2+b^2-2ab\cos \theta$$
where $\theta$ is the angle between sides a and b.

In other words,
$$c=\sqrt{a^2+b^2-2ab\cos \theta}$$
You're supposed to take the partial derivatives of this expression.
To evaluate them, you don't need the value of c.
 
Ok so you are saying I only need the values of a,b and theta if i wish to calculate the value of c right?

Otherwise I am to calculate the partial derivatives from the formula right?
 
Yep.
 
Ok, thanks for the cosine rule.

c=sqrt(a^2+b^2−2abcos(θ))

Ok, here are my partial derivatives:

c/a = sqrt(2a+ b^2 - 2bcos(θ))

c/b = sqrt(a^2+ 2b- 2acos(θ))

c/θ = sqrt(a^2+ b^2 - 2ab)

are these correct? or am I doing something wrong?
 
Last edited by a moderator:
You will need to apply the chain rule in all 3 cases.
Do you know what the chain rule is?

Furthermore, do you know what the derivative of $\cos \theta$ is?
 
is the derivative of costheta -sintheta?

what do you mean i will need to apply the chain rule? is that because we are dealing with a square root? is the derivatives i provided the inside of the chain rule? I am confused as to what you are trying to say. with the chain rule comment?
 
Kris said:
is the derivative of costheta -sintheta?

Correct!
what do you mean i will need to apply the chain rule? is that because we are dealing with a square root? is the derivatives i provided the inside of the chain rule? I am confused as to what you are trying to say. with the chain rule comment?

Yes, it is because of the square root.
Do you know the derivative of a square root?

You can't just ignore the square root and differentiate what's inside.
Instead you need to take the derivative of the square root and leave its contents intact.
And then multiply everything with the derivative of the contents.
 
so it will look something like 1/2 ( function)^-1/2 multiplied by partial derivative required then?
 
  • #10
Kris said:
so it will look something like 1/2 ( function)^-1/2 multiplied by partial derivative required then?

Yes!
 
  • #11
Re: Partial Derivatives

Kris said:
Can someone remind me of what the cosine rule is?

How to find the partial derivatives?
Any help will be appreciated :)

May I ask why you have changed your original post? This makes a topic harder to follow if information that is used in subsequent posts is later removed.
 
  • #12
I always write the cosine rule as [math]\displaystyle \begin{align*} c^2 = a^2 + b^2 - 2ab\cos{(C)} \end{align*}[/math], since it is convention to label the sides with lowercase letters and the angle opposite each side with the same capital letter.

Just for fun, here's a proof of the Cosine Rule (although they use [math]\displaystyle \theta[/math]).

cosinerule_zps33b193fb.jpg
 
  • #13
Re: Partial Derivatives

MarkFL said:
May I ask why you have changed your original post? This makes a topic harder to follow if information that is used in subsequent posts is later removed.

For the sake of clarity, I have restored your posts (#1 and #5) to more closely reflect their original content.

The editing of posts should be used primarily for correcting typos. Removing relevant information is not recommended as this can make a topic hard to read/follow.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K