Partial derivatives-polar coordinates

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Coordinates Partial
Click For Summary

Discussion Overview

The discussion revolves around the calculation of partial derivatives in polar coordinates, specifically focusing on the transformation of derivatives from Cartesian to polar coordinates. Participants are examining the derivation of second derivatives and the application of the chain rule in this context.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a derivation of the second derivative $\partial_{xx}$ in polar coordinates, expressing concern over discrepancies with their notes.
  • Another participant seeks clarification on the steps taken in the derivation, particularly regarding the application of the chain rule and the substitution of derivatives.
  • Several participants discuss the distinction between multiplication and composition of derivatives, emphasizing the need for careful notation when dealing with partial derivatives.
  • There is a mention of the non-linearity of the partial derivative operator and its implications for the calculations being performed.
  • One participant provides an example to illustrate the correct application of the chain rule in the context of polar coordinates.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of the derivation steps and the application of the chain rule. There is no consensus on the final form of the second derivative, and the discussion remains unresolved regarding the specific calculations and interpretations of the derivative operations.

Contextual Notes

Participants highlight potential misunderstandings related to the notation of partial derivatives and the need to distinguish between product and composition operations. There are unresolved questions about the assumptions made during the derivation process.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:

$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$

Now,I want to calculate $ \partial_{xx}$.

That's what I have tried:

$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$

I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$

Have I done something wrong? :confused: (Thinking)
 
Physics news on Phys.org
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)
 
I like Serena said:
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)

I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)
 
evinda said:
I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)

Aah! Now I see!
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".
 
I like Serena said:
Aah! Now I see!
And no, you can't do it just like that.
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".

In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:
 
evinda said:
In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:

Umm... not quite sure what you're saying here... (Wondering)
It's true enough that $\displaystyle{\frac{\partial}{\partial x}}$ is not linear, but we do have that:

$$\left(\frac \partial{\partial x} \cdot \frac \partial{\partial x}\right)\Big(f(x)\Big)
=\left(\frac \partial{\partial x}\Big(f(x)\Big)\right)^2
=\left(\frac \partial{\partial x}\right)^2\Big(f(x)\Big)$$
Actually, you can replace it like you did, but you have to be very careful to distinguish product from composition.

So for instance:
\begin{aligned}\partial_x(\cos \theta)\partial_r
&= \Big(\partial_x \circ (\cos \theta)\Big) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r - \frac{\sin \theta}{r} \cdot \partial_\theta\Big) \circ (\cos \theta) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r(\cos \theta) - \frac{\sin \theta}{r} \cdot \partial_\theta(\cos \theta)\Big)\cdot \partial_r \\
&= \Big(\cos \theta \cdot 0 - \frac{\sin \theta}{r} \cdot -\sin \theta\Big)\cdot \partial_r \\
&=\frac{\sin^2 \theta}{r}\cdot \partial_r
\end{aligned}
(Wasntme)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K