Partial derivatives-polar coordinates

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Coordinates Partial
Click For Summary
SUMMARY

The discussion focuses on calculating the second partial derivative \( \partial_{xx} \) in polar coordinates using the relations \( \partial_{r} \) and \( \partial_{\theta} \). The user attempts to simplify the expression but arrives at a different result than expected. Key insights include the distinction between multiplication and composition of partial derivatives, emphasizing that \( \partial_x \) should be treated as a composition operator rather than a simple multiplication. The correct simplification leads to the expression \( \cos^2 \theta \partial_{rr} + \frac{\sin^2 \theta}{r^2} \partial_{\theta \theta} + \frac{\sin^2 \theta}{r} \partial_r - \frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta} + \frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta} \).

PREREQUISITES
  • Understanding of partial derivatives and their notation
  • Familiarity with polar coordinates and their relationships to Cartesian coordinates
  • Knowledge of calculus, specifically differentiation techniques
  • Ability to manipulate mathematical expressions involving trigonometric functions
NEXT STEPS
  • Study the properties of partial derivatives in polar coordinates
  • Learn about the chain rule in the context of multivariable calculus
  • Explore the application of the product and composition rules for derivatives
  • Investigate the implications of mixed partial derivatives and their equality
USEFUL FOR

Mathematicians, physics students, and anyone studying multivariable calculus, particularly those working with polar coordinates and partial derivatives.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:

$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$

Now,I want to calculate $ \partial_{xx}$.

That's what I have tried:

$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$

I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$

Have I done something wrong? :confused: (Thinking)
 
Physics news on Phys.org
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)
 
I like Serena said:
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)

I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)
 
evinda said:
I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)

Aah! Now I see!
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".
 
I like Serena said:
Aah! Now I see!
And no, you can't do it just like that.
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".

In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:
 
evinda said:
In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:

Umm... not quite sure what you're saying here... (Wondering)
It's true enough that $\displaystyle{\frac{\partial}{\partial x}}$ is not linear, but we do have that:

$$\left(\frac \partial{\partial x} \cdot \frac \partial{\partial x}\right)\Big(f(x)\Big)
=\left(\frac \partial{\partial x}\Big(f(x)\Big)\right)^2
=\left(\frac \partial{\partial x}\right)^2\Big(f(x)\Big)$$
Actually, you can replace it like you did, but you have to be very careful to distinguish product from composition.

So for instance:
\begin{aligned}\partial_x(\cos \theta)\partial_r
&= \Big(\partial_x \circ (\cos \theta)\Big) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r - \frac{\sin \theta}{r} \cdot \partial_\theta\Big) \circ (\cos \theta) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r(\cos \theta) - \frac{\sin \theta}{r} \cdot \partial_\theta(\cos \theta)\Big)\cdot \partial_r \\
&= \Big(\cos \theta \cdot 0 - \frac{\sin \theta}{r} \cdot -\sin \theta\Big)\cdot \partial_r \\
&=\frac{\sin^2 \theta}{r}\cdot \partial_r
\end{aligned}
(Wasntme)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K