MHB Partial derivatives-polar coordinates

Click For Summary
The discussion focuses on calculating the second partial derivative \( \partial_{xx} \) in polar coordinates and identifying discrepancies in results. The initial expressions for \( \partial_x \) and \( \partial_y \) are provided, leading to a derived formula for \( \partial_{xx} \). The user attempts to simplify their result but finds a difference compared to their notes. Clarification is sought regarding the proper treatment of derivatives and the distinction between multiplication and composition in this context. The conversation emphasizes the importance of careful notation and understanding when working with derivatives in polar coordinates.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:

$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$

Now,I want to calculate $ \partial_{xx}$.

That's what I have tried:

$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$

I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$

Have I done something wrong? :confused: (Thinking)
 
Physics news on Phys.org
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)
 
I like Serena said:
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)

I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)
 
evinda said:
I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)

Aah! Now I see!
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".
 
I like Serena said:
Aah! Now I see!
And no, you can't do it just like that.
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".

In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:
 
evinda said:
In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:

Umm... not quite sure what you're saying here... (Wondering)
It's true enough that $\displaystyle{\frac{\partial}{\partial x}}$ is not linear, but we do have that:

$$\left(\frac \partial{\partial x} \cdot \frac \partial{\partial x}\right)\Big(f(x)\Big)
=\left(\frac \partial{\partial x}\Big(f(x)\Big)\right)^2
=\left(\frac \partial{\partial x}\right)^2\Big(f(x)\Big)$$
Actually, you can replace it like you did, but you have to be very careful to distinguish product from composition.

So for instance:
\begin{aligned}\partial_x(\cos \theta)\partial_r
&= \Big(\partial_x \circ (\cos \theta)\Big) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r - \frac{\sin \theta}{r} \cdot \partial_\theta\Big) \circ (\cos \theta) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r(\cos \theta) - \frac{\sin \theta}{r} \cdot \partial_\theta(\cos \theta)\Big)\cdot \partial_r \\
&= \Big(\cos \theta \cdot 0 - \frac{\sin \theta}{r} \cdot -\sin \theta\Big)\cdot \partial_r \\
&=\frac{\sin^2 \theta}{r}\cdot \partial_r
\end{aligned}
(Wasntme)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
4
Views
4K
Replies
12
Views
3K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K