MHB Partial fraction decomposition

AI Thread Summary
The discussion focuses on the partial fraction decomposition of the expression 4x²y divided by the product of two quadratic polynomials. A clever algebraic manipulation is suggested to simplify the expression, leading to the identification of 4xy as the difference of two quadratic terms. The proposed decomposition involves expressing the original fraction as a sum of two simpler fractions, each with one of the quadratic polynomials in the denominator. Through coefficient comparison, the values for A and D are determined, resulting in the final decomposition of the expression. The solution demonstrates an effective approach to tackling complex algebraic fractions.
Drain Brain
Messages
143
Reaction score
0
please help decompose$\frac{4x^2y}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)}$

I've used the cases I know for this problem but to no avail. please help me.
 
Mathematics news on Phys.org
This takes a bit of trickery, note that :

$$\begin{align}\frac{4x^2y}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)} &= \frac{x \cdot 4xy}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)} \\ &= x \cdot \frac{(x^2+2xy+2y^2) - (x^2-2xy+2y^2)}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)}\end{align}$$

Can you proceed?
 
mathbalarka said:
This takes a bit of trickery, note that :

$$\begin{align}\frac{4x^2y}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)} &= \frac{x \cdot 4xy}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)} \\ &= x \cdot \frac{(x^2+2xy+2y^2) - (x^2-2xy+2y^2)}{(x^2-2xy+2y^2)(x^2+2xy+2y^2)}\end{align}$$

Can you proceed?

sure, from here It seems that I can decompose it. but how come you replaced $4xy$ to $(x^2+2xy+2y^2) - (x^2-2xy+2y^2)$ ??
 
Uh, not sure if I understand your question, but it follows from basic algebra

$$(x^2+2xy+2y^2) - (x^2-2xy+2y^2) = \cancel{\color{red}{x^2}} + 2xy + \cancel{\color{green}{2y^2}} - \cancel{\color{red}{x^2}} + 2xy - \cancel{\color{green}{2y^2}} = 2xy + 2xy = \boxed{4xy}$$
 
While mathbalarka's suggestion is quite clever and makes light work of the problem, I would have assumed the decomposition would take the form:

$$\frac{4x^2y}{\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)}=\frac{Ax+By+C}{x^2-2xy+2y^2}+\frac{Dx+Ey+F}{x^2+2xy+2y^2}$$

and then plodded along with the resulting cumbersome algebra.

Hence:

$$4x^2y=(Ax+By+C)\left(x^2+2xy+2y^2\right)+(Dx+Ey+F)\left(x^2-2xy+2y^2\right)$$

$$4x^2y=(A+D)x^3+(C+F)x^2+(2A+B-2D+E)x^2y+(2A+2B+2D-2E)xy^2+(2C-2F)xy+(2C+2F)y^2+(2B+2E)y^3$$

Comparing coefficients, we obtain:

$$A+D=0$$

$$C+F=0$$

$$2A+B-2D+E=4$$

$$A+B+D-E=0$$

$$C-F=0$$

$$B+E=0$$

From the 2nd and 5th equations, we immediately find:

$$C=F=0$$

From the 1st, 4th and 6th, we find:

$$B=E=0$$

Thus, we are left with:

$$A=-D$$

$$A=D+2$$

Thus, $$A=1,\,D=-1$$ and so we find:

[box=green]$$\frac{4x^2y}{\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)}=\frac{x}{x^2-2xy+2y^2}-\frac{x}{x^2+2xy+2y^2}$$[/box]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
11
Views
2K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
3
Views
594
Replies
6
Views
270
Back
Top