Partial fraction problem (x^2)/[(x-2)(x+3)(x-1)]

  • Context: MHB 
  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Fraction Partial
Click For Summary

Discussion Overview

The discussion revolves around solving the partial fraction decomposition of the expression $\frac{x^2}{(x-2)(x+3)(x-1)}$. Participants explore various methods to determine the coefficients A, B, and C in the decomposition.

Discussion Character

  • Mathematical reasoning, Technical explanation, Homework-related

Main Points Raised

  • One participant proposes breaking the fraction into three parts: $\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$ and seeks guidance on substituting values for A, B, and C.
  • Another participant suggests using the Heaviside cover-up method to find A, B, and C by substituting specific values of x, providing calculations for each coefficient.
  • A different participant emphasizes that any three values can be used to create equations for A, B, and C, not just the roots of the factors, and provides alternative equations based on different substitutions.
  • One participant describes a method of equating coefficients after expanding the right-hand side of the equation to derive a system of equations for A, B, and C.
  • Another participant confirms the value of A found using the cover-up method and suggests a similar approach for finding B and C.

Areas of Agreement / Disagreement

Participants generally agree on the methods for finding A, B, and C, but there are multiple approaches discussed, and no consensus is reached on a single preferred method.

Contextual Notes

Some methods rely on specific substitutions that may not be universally applicable, and the discussion includes various approaches that lead to the same goal but differ in technique.

mathlearn
Messages
331
Reaction score
0
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
 
Mathematics news on Phys.org
Yes, we want:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{x-2}+\frac{B}{x+3}+\frac{C}{x-1}$$

Now, let's try the Heaviside cover-up method...cover up the factor $(x-2)$ on the LHS, and evaluate what's left for $x=2$ (the root of the factor being covered up...this value will be $A$:

$$A=\frac{2^2}{(2+3)(2-1)}=\frac{4}{5}$$

Likewise, we find:

$$B=\frac{(-3)^2}{((-3)-2)((-3)-1)}=\frac{9}{20}$$

$$C=\frac{1^2}{(1-2)(1+3)}=-\frac{1}{4}$$

Hence:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{4}{5(x-2)}+\frac{9}{20(x+3)}-\frac{1}{4(x-1)}$$

This is essentially the same as going back to where you left off:

$$x^2=A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)$$

Let $x=2$:

$$2^2=A(2+3)(2-1)+B(2-2)(2-1)+C(2-2)(2+3)=5A\implies A=\frac{4}{5}$$

Let $x=-3$:

$$(-3)^2=A((-3)+3)((-3)-1)+B((-3)-2)((-3)-1)+C((-3)-2)((-3)+3)=20B\implies B=\frac{9}{20}$$

Let $x=1$:

$$1^2=A(1+3)(1-1)+B(1-2)(1-1)+C(1-2)(1+3)=-4C\implies C=-\frac{1}{4}$$
 
Thanks Mark, nicely explained
 
mathlearn said:
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
Are you under the impression that you have to do this is a specific way?

The simplest thing to do is to set x= 1, 2, and -3 so that the factors, x- 1, x- 2, and x+ 3, are 0: That gives three completely separated equations, one for A, another for B, and the last for C.

However, in fact, setting x equal to any three values gives three equations to solve for A, B, and C. For example, setting x= 0 gives $0= -3A+ 2B- 6C$. Setting x= -1 gives $1= -4A+ 6B- 6C$. Setting x= 3, $9= 12A+ 2B+ 6C$. You can solve those three equations for A, B, and C.

Or just multiply the formula on the right:
$x^2= Ax^2+ 2Ax- 3A+ Bx^2- 3Bx+ 2B+ Cx^2+ Cx- 6C= (A+ B+ C)x^2+ (2A- 3B+ C)x+ (3A- 2B+ 6C)$

Then, since these are to be equal for all x, The "corresponding" coefficients" must be equal: $A+ B+ C= 1$, $2A- 3B+ C= 0$, $3A- 2B+ 6C= 0$. Again, three equations to solve for A, B, and C.
 
To find A,multiplying the both sides by (x-2);

x^2/(x+3)(x-1)=A + B(x-2)/(x+3) + C(x-2)/(x-1)

Now,by setting x=2,the expressions containing (x-2) vanish,so we get rid of B & C,

2^2/(2+3)(2-1)=A+0+0, then,

4/5=A

By the similar method we could find B & C.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K