MHB Partial fraction problem (x^2)/[(x-2)(x+3)(x-1)]

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Fraction Partial
mathlearn
Messages
331
Reaction score
0
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
 
Mathematics news on Phys.org
Yes, we want:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{x-2}+\frac{B}{x+3}+\frac{C}{x-1}$$

Now, let's try the Heaviside cover-up method...cover up the factor $(x-2)$ on the LHS, and evaluate what's left for $x=2$ (the root of the factor being covered up...this value will be $A$:

$$A=\frac{2^2}{(2+3)(2-1)}=\frac{4}{5}$$

Likewise, we find:

$$B=\frac{(-3)^2}{((-3)-2)((-3)-1)}=\frac{9}{20}$$

$$C=\frac{1^2}{(1-2)(1+3)}=-\frac{1}{4}$$

Hence:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{4}{5(x-2)}+\frac{9}{20(x+3)}-\frac{1}{4(x-1)}$$

This is essentially the same as going back to where you left off:

$$x^2=A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)$$

Let $x=2$:

$$2^2=A(2+3)(2-1)+B(2-2)(2-1)+C(2-2)(2+3)=5A\implies A=\frac{4}{5}$$

Let $x=-3$:

$$(-3)^2=A((-3)+3)((-3)-1)+B((-3)-2)((-3)-1)+C((-3)-2)((-3)+3)=20B\implies B=\frac{9}{20}$$

Let $x=1$:

$$1^2=A(1+3)(1-1)+B(1-2)(1-1)+C(1-2)(1+3)=-4C\implies C=-\frac{1}{4}$$
 
Thanks Mark, nicely explained
 
mathlearn said:
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
Are you under the impression that you have to do this is a specific way?

The simplest thing to do is to set x= 1, 2, and -3 so that the factors, x- 1, x- 2, and x+ 3, are 0: That gives three completely separated equations, one for A, another for B, and the last for C.

However, in fact, setting x equal to any three values gives three equations to solve for A, B, and C. For example, setting x= 0 gives $0= -3A+ 2B- 6C$. Setting x= -1 gives $1= -4A+ 6B- 6C$. Setting x= 3, $9= 12A+ 2B+ 6C$. You can solve those three equations for A, B, and C.

Or just multiply the formula on the right:
$x^2= Ax^2+ 2Ax- 3A+ Bx^2- 3Bx+ 2B+ Cx^2+ Cx- 6C= (A+ B+ C)x^2+ (2A- 3B+ C)x+ (3A- 2B+ 6C)$

Then, since these are to be equal for all x, The "corresponding" coefficients" must be equal: $A+ B+ C= 1$, $2A- 3B+ C= 0$, $3A- 2B+ 6C= 0$. Again, three equations to solve for A, B, and C.
 
To find A,multiplying the both sides by (x-2);

x^2/(x+3)(x-1)=A + B(x-2)/(x+3) + C(x-2)/(x-1)

Now,by setting x=2,the expressions containing (x-2) vanish,so we get rid of B & C,

2^2/(2+3)(2-1)=A+0+0, then,

4/5=A

By the similar method we could find B & C.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
3K
Replies
10
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Back
Top