MHB Partial fraction problem (x^2)/[(x-2)(x+3)(x-1)]

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Fraction Partial
AI Thread Summary
The discussion revolves around solving the partial fraction decomposition of the expression x^2/[(x-2)(x+3)(x-1)]. The method involves breaking the fraction into three components, A, B, and C, and establishing equations based on substituting specific values for x. The Heaviside cover-up method is suggested to find the values of A, B, and C, leading to A = 4/5, B = 9/20, and C = -1/4. Alternative approaches are also mentioned, including setting different values for x to generate a system of equations for A, B, and C. Ultimately, the correct decomposition is confirmed as x^2/[(x-2)(x+3)(x-1)] = 4/5(x-2) + 9/20(x+3) - 1/4(x-1).
mathlearn
Messages
331
Reaction score
0
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
 
Mathematics news on Phys.org
Yes, we want:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{x-2}+\frac{B}{x+3}+\frac{C}{x-1}$$

Now, let's try the Heaviside cover-up method...cover up the factor $(x-2)$ on the LHS, and evaluate what's left for $x=2$ (the root of the factor being covered up...this value will be $A$:

$$A=\frac{2^2}{(2+3)(2-1)}=\frac{4}{5}$$

Likewise, we find:

$$B=\frac{(-3)^2}{((-3)-2)((-3)-1)}=\frac{9}{20}$$

$$C=\frac{1^2}{(1-2)(1+3)}=-\frac{1}{4}$$

Hence:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{4}{5(x-2)}+\frac{9}{20(x+3)}-\frac{1}{4(x-1)}$$

This is essentially the same as going back to where you left off:

$$x^2=A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)$$

Let $x=2$:

$$2^2=A(2+3)(2-1)+B(2-2)(2-1)+C(2-2)(2+3)=5A\implies A=\frac{4}{5}$$

Let $x=-3$:

$$(-3)^2=A((-3)+3)((-3)-1)+B((-3)-2)((-3)-1)+C((-3)-2)((-3)+3)=20B\implies B=\frac{9}{20}$$

Let $x=1$:

$$1^2=A(1+3)(1-1)+B(1-2)(1-1)+C(1-2)(1+3)=-4C\implies C=-\frac{1}{4}$$
 
Thanks Mark, nicely explained
 
mathlearn said:
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
Are you under the impression that you have to do this is a specific way?

The simplest thing to do is to set x= 1, 2, and -3 so that the factors, x- 1, x- 2, and x+ 3, are 0: That gives three completely separated equations, one for A, another for B, and the last for C.

However, in fact, setting x equal to any three values gives three equations to solve for A, B, and C. For example, setting x= 0 gives $0= -3A+ 2B- 6C$. Setting x= -1 gives $1= -4A+ 6B- 6C$. Setting x= 3, $9= 12A+ 2B+ 6C$. You can solve those three equations for A, B, and C.

Or just multiply the formula on the right:
$x^2= Ax^2+ 2Ax- 3A+ Bx^2- 3Bx+ 2B+ Cx^2+ Cx- 6C= (A+ B+ C)x^2+ (2A- 3B+ C)x+ (3A- 2B+ 6C)$

Then, since these are to be equal for all x, The "corresponding" coefficients" must be equal: $A+ B+ C= 1$, $2A- 3B+ C= 0$, $3A- 2B+ 6C= 0$. Again, three equations to solve for A, B, and C.
 
To find A,multiplying the both sides by (x-2);

x^2/(x+3)(x-1)=A + B(x-2)/(x+3) + C(x-2)/(x-1)

Now,by setting x=2,the expressions containing (x-2) vanish,so we get rid of B & C,

2^2/(2+3)(2-1)=A+0+0, then,

4/5=A

By the similar method we could find B & C.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
3K
Replies
10
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Back
Top