MHB Partial fraction problem (x^2)/[(x-2)(x+3)(x-1)]

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Fraction Partial
Click For Summary
The discussion revolves around solving the partial fraction decomposition of the expression x^2/[(x-2)(x+3)(x-1)]. The method involves breaking the fraction into three components, A, B, and C, and establishing equations based on substituting specific values for x. The Heaviside cover-up method is suggested to find the values of A, B, and C, leading to A = 4/5, B = 9/20, and C = -1/4. Alternative approaches are also mentioned, including setting different values for x to generate a system of equations for A, B, and C. Ultimately, the correct decomposition is confirmed as x^2/[(x-2)(x+3)(x-1)] = 4/5(x-2) + 9/20(x+3) - 1/4(x-1).
mathlearn
Messages
331
Reaction score
0
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
 
Mathematics news on Phys.org
Yes, we want:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{x-2}+\frac{B}{x+3}+\frac{C}{x-1}$$

Now, let's try the Heaviside cover-up method...cover up the factor $(x-2)$ on the LHS, and evaluate what's left for $x=2$ (the root of the factor being covered up...this value will be $A$:

$$A=\frac{2^2}{(2+3)(2-1)}=\frac{4}{5}$$

Likewise, we find:

$$B=\frac{(-3)^2}{((-3)-2)((-3)-1)}=\frac{9}{20}$$

$$C=\frac{1^2}{(1-2)(1+3)}=-\frac{1}{4}$$

Hence:

$$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{4}{5(x-2)}+\frac{9}{20(x+3)}-\frac{1}{4(x-1)}$$

This is essentially the same as going back to where you left off:

$$x^2=A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)$$

Let $x=2$:

$$2^2=A(2+3)(2-1)+B(2-2)(2-1)+C(2-2)(2+3)=5A\implies A=\frac{4}{5}$$

Let $x=-3$:

$$(-3)^2=A((-3)+3)((-3)-1)+B((-3)-2)((-3)-1)+C((-3)-2)((-3)+3)=20B\implies B=\frac{9}{20}$$

Let $x=1$:

$$1^2=A(1+3)(1-1)+B(1-2)(1-1)+C(1-2)(1+3)=-4C\implies C=-\frac{1}{4}$$
 
Thanks Mark, nicely explained
 
mathlearn said:
Hello Everyone , I need some help in solving this partial fraction $\frac{x^2}{(x-2)(x+3)(x-1)}$

I am using this method in which the partial fraction is broken into 3 parts namely A,B &C

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}+\frac{C}{(x-1)}$

$\frac{x^2}{(x-2)(x+3)(x-1)}=\frac{A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}{(x-2)(x-3)(x-1)}$

Common denominators cancel out resulting in,

${x^2}={A(x+3)(x-1)+B(x-2)(x-1)+C(x-2)(x+3)}$

Now what values should be substituted to $x$ in order to get the relevant values for A,B & C
Are you under the impression that you have to do this is a specific way?

The simplest thing to do is to set x= 1, 2, and -3 so that the factors, x- 1, x- 2, and x+ 3, are 0: That gives three completely separated equations, one for A, another for B, and the last for C.

However, in fact, setting x equal to any three values gives three equations to solve for A, B, and C. For example, setting x= 0 gives $0= -3A+ 2B- 6C$. Setting x= -1 gives $1= -4A+ 6B- 6C$. Setting x= 3, $9= 12A+ 2B+ 6C$. You can solve those three equations for A, B, and C.

Or just multiply the formula on the right:
$x^2= Ax^2+ 2Ax- 3A+ Bx^2- 3Bx+ 2B+ Cx^2+ Cx- 6C= (A+ B+ C)x^2+ (2A- 3B+ C)x+ (3A- 2B+ 6C)$

Then, since these are to be equal for all x, The "corresponding" coefficients" must be equal: $A+ B+ C= 1$, $2A- 3B+ C= 0$, $3A- 2B+ 6C= 0$. Again, three equations to solve for A, B, and C.
 
To find A,multiplying the both sides by (x-2);

x^2/(x+3)(x-1)=A + B(x-2)/(x+3) + C(x-2)/(x-1)

Now,by setting x=2,the expressions containing (x-2) vanish,so we get rid of B & C,

2^2/(2+3)(2-1)=A+0+0, then,

4/5=A

By the similar method we could find B & C.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K