MHB Partial Fractions for Cubic: Setup & Solve

AI Thread Summary
To separate the function s/(s+1)^3 for an inverse Laplace transform, the correct setup for partial fractions is A/(s+1) + B/(s+1)^2 + C/(s+1)^3. The user initially attempted a more complex decomposition but ended up with too many unknowns. By substituting values and simplifying, they found that A = 0, B = 1, and C = -1, leading to the correct partial fraction decomposition. The discussion clarifies the method for handling repeated linear factors in the denominator, emphasizing the need for specific forms based on the degree of the polynomial. Understanding these setups is crucial for successfully applying inverse Laplace transforms.
Dustinsfl
Messages
2,217
Reaction score
5
I am trying to separate out
\[
\frac{s}{(s+1)^3}
\]
for an inverse Laplace transform.

How does one setup up partial fractions for a cubic? I know for a square I would do
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2}
\]
I tried doing
\[
\frac{A+Bs}{(s+1)^2} + \frac{Cs^2+Ds+E}{(s+1)^3}
\]
which led to
\[
s^2(B+C) + s(A+B+D) + A + E = s
\]
Therefore, let \(A = B = 1\). Then \(C = E = -1\) and \(D = -1\).
\[
\frac{1}{s+1} - \frac{s^2+s+1}{(s+1)^2} = \frac{2}{s+1} + \frac{1}{(s+1)^3} - \frac{1}{(s+1)^2}
\]
but the answer is
\[
\frac{1}{(s+1)^2} - \frac{1}{(s+1)^3}
\]

How can I solve this?


I now tried
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2} + \frac{Ds^2 + Es + F}{(s+1)^2}
\]
which led to
\begin{align}
A + B + D &=0\\
2A + B + C +E &= 1\\
A + C + F &= 0
\end{align}
 
Last edited:
Mathematics news on Phys.org
You have too many unknowns on the right side of the equation.Assume $ \displaystyle \frac{s}{(s+1)^{3}} = \frac{A}{s+1} + \frac{B}{(s+1)^{2}} + \frac{C}{(s+1)^{3}}$Multiply both sides by $(s+1)^{3}$ and let $s=-1$.

Then $-1 = C$.Now subtract the partial fraction from both sides.

$ \displaystyle \frac{s}{(s+1)^{3}} + \frac{1}{(s+1)^{3}}= \frac{1}{(s+1)^{2}} = \frac{A}{s+1} + \frac{B}{(s+1)^{2}}$.Multiply both sides by $(s+1)^{2}$ and let $s=-1$.

Then $1 = B$.Subtract the partial fraction from both sides.

$\displaystyle \frac{1}{(s+1)^{2}} - \frac{1}{(s+1)^{2}} = 0 = \frac{A}{s+1}$.

Then $A=0$.
 
dwsmith said:
I am trying to separate out
\[
\frac{s}{(s+1)^3}
\]
for an inverse Laplace transform.

How does one setup up partial fractions for a cubic? I know for a square I would do
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2}
\]
I tried doing
\[
\frac{A+Bs}{(s+1)^2} + \frac{Cs^2+Ds+E}{(s+1)^3}
\]
which led to
\[
s^2(B+C) + s(A+B+D) + A + E = s
\]
Therefore, let \(A = B = 1\). Then \(C = E = -1\) and \(D = -1\).
\[
\frac{1}{s+1} - \frac{s^2+s+1}{(s+1)^2} = \frac{2}{s+1} + \frac{1}{(s+1)^3} - \frac{1}{(s+1)^2}
\]
but the answer is
\[
\frac{1}{(s+1)^2} - \frac{1}{(s+1)^3}
\]

How can I solve this?


I now tried
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2} + \frac{Ds^2 + Es + F}{(s+1)^2}
\]
which led to
\begin{align}
A + B + D &=0\\
2A + B + C +E &= 1\\
A + C + F &= 0
\end{align}

Let $\dfrac{P(x)}{Q(x)}$ be a rational function, Whenever you have a repeated linear factor $(a_1x+b_1)^n$ in your denominator $Q(x)$, you need to use the following decomposition rule:
\[\frac{P(x)}{Q(x)} = \frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+ \ldots+\frac{A_n}{(a_1x+b_1)^n}.\]
In your case, the decomposition you want will be of the form
\[\frac{s}{(s+1)^3} = \frac{A}{s+1}+\frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}\]
Can you take things from here?

Edit: Ninja'd by Random Variable.
 
I have one question. Why, when we have a square, do we do:
\[
\frac{A}{s + 1} + \frac{Bs+C}{(s + 1)^2}
\]
but for the cubic, we had to do:
\[
\frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}
\]
 
dwsmith said:
I have one question. Why, when we have a square, do we do:
\[
\frac{A}{s + 1} + \frac{Bs+C}{(s + 1)^2}
\]
but for the cubic, we had to do:
\[
\frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}
\]

We don't...only when we have quadratic factors in the denominator do we use linear numerators. If the degree of $P(x)$ is less than $2n$ then we may state the following:

i) For non-repeated quadratic factors:

$$\frac{P(x)}{\prod\limits_{k=1}^n\left(a_kx^2+b_kx+c_k \right)}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{a_kx^2+b_kx+c_k} \right)$$

ii) For repeated quadratic factors:

$$\frac{P(x)}{\left(ax^2+bx+c \right)^n}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{\left(ax^2+bx+c \right)^k} \right)$$
 
MarkFL said:
We don't...only when we have quadratic factors in the denominator do we use linear numerators. If the degree of $P(x)$ is less than $2n$ then we may state the following:

i) For non-repeated quadratic factors:

$$\frac{P(x)}{\prod\limits_{k=1}^n\left(a_kx^2+b_kx+c_k \right)}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{a_kx^2+b_kx+c_k} \right)$$

ii) For repeated quadratic factors:

$$\frac{P(x)}{\left(ax^2+bx+c \right)^n}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{\left(ax^2+bx+c \right)^k} \right)$$

I don't understand what you mean.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top