Partial Fractions for Cubic: Setup & Solve

Click For Summary

Discussion Overview

The discussion revolves around the setup and solution of partial fractions for the expression \(\frac{s}{(s+1)^3}\) in the context of inverse Laplace transforms. Participants explore various methods for decomposing the fraction, addressing both theoretical and practical aspects of partial fraction decomposition, particularly for cubic denominators.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a decomposition of \(\frac{s}{(s+1)^3}\) into the form \(\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2} + \frac{Ds^2 + Es + F}{(s+1)^2}\) and derives a system of equations from it.
  • Another participant suggests a simpler decomposition as \(\frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}\) and provides a method to find the coefficients by substituting values for \(s\).
  • There is a question raised about the difference in approach when dealing with square versus cubic terms in the denominator, specifically regarding the use of linear versus constant numerators.
  • Some participants clarify that linear numerators are used for non-repeated quadratic factors, while constant numerators are used for repeated linear factors.

Areas of Agreement / Disagreement

Participants express differing views on the appropriate setup for partial fractions, with some advocating for a more complex approach and others favoring a simpler method. The discussion remains unresolved regarding the best approach to take for the given expression.

Contextual Notes

Participants note the importance of the degree of the numerator in relation to the degree of the denominator when setting up partial fractions, but there are varying interpretations of how this applies to the specific case of cubic denominators.

Dustinsfl
Messages
2,217
Reaction score
5
I am trying to separate out
\[
\frac{s}{(s+1)^3}
\]
for an inverse Laplace transform.

How does one setup up partial fractions for a cubic? I know for a square I would do
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2}
\]
I tried doing
\[
\frac{A+Bs}{(s+1)^2} + \frac{Cs^2+Ds+E}{(s+1)^3}
\]
which led to
\[
s^2(B+C) + s(A+B+D) + A + E = s
\]
Therefore, let \(A = B = 1\). Then \(C = E = -1\) and \(D = -1\).
\[
\frac{1}{s+1} - \frac{s^2+s+1}{(s+1)^2} = \frac{2}{s+1} + \frac{1}{(s+1)^3} - \frac{1}{(s+1)^2}
\]
but the answer is
\[
\frac{1}{(s+1)^2} - \frac{1}{(s+1)^3}
\]

How can I solve this?


I now tried
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2} + \frac{Ds^2 + Es + F}{(s+1)^2}
\]
which led to
\begin{align}
A + B + D &=0\\
2A + B + C +E &= 1\\
A + C + F &= 0
\end{align}
 
Last edited:
Physics news on Phys.org
You have too many unknowns on the right side of the equation.Assume $ \displaystyle \frac{s}{(s+1)^{3}} = \frac{A}{s+1} + \frac{B}{(s+1)^{2}} + \frac{C}{(s+1)^{3}}$Multiply both sides by $(s+1)^{3}$ and let $s=-1$.

Then $-1 = C$.Now subtract the partial fraction from both sides.

$ \displaystyle \frac{s}{(s+1)^{3}} + \frac{1}{(s+1)^{3}}= \frac{1}{(s+1)^{2}} = \frac{A}{s+1} + \frac{B}{(s+1)^{2}}$.Multiply both sides by $(s+1)^{2}$ and let $s=-1$.

Then $1 = B$.Subtract the partial fraction from both sides.

$\displaystyle \frac{1}{(s+1)^{2}} - \frac{1}{(s+1)^{2}} = 0 = \frac{A}{s+1}$.

Then $A=0$.
 
dwsmith said:
I am trying to separate out
\[
\frac{s}{(s+1)^3}
\]
for an inverse Laplace transform.

How does one setup up partial fractions for a cubic? I know for a square I would do
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2}
\]
I tried doing
\[
\frac{A+Bs}{(s+1)^2} + \frac{Cs^2+Ds+E}{(s+1)^3}
\]
which led to
\[
s^2(B+C) + s(A+B+D) + A + E = s
\]
Therefore, let \(A = B = 1\). Then \(C = E = -1\) and \(D = -1\).
\[
\frac{1}{s+1} - \frac{s^2+s+1}{(s+1)^2} = \frac{2}{s+1} + \frac{1}{(s+1)^3} - \frac{1}{(s+1)^2}
\]
but the answer is
\[
\frac{1}{(s+1)^2} - \frac{1}{(s+1)^3}
\]

How can I solve this?


I now tried
\[
\frac{A}{s+1} + \frac{Bs+C}{(s+1)^2} + \frac{Ds^2 + Es + F}{(s+1)^2}
\]
which led to
\begin{align}
A + B + D &=0\\
2A + B + C +E &= 1\\
A + C + F &= 0
\end{align}

Let $\dfrac{P(x)}{Q(x)}$ be a rational function, Whenever you have a repeated linear factor $(a_1x+b_1)^n$ in your denominator $Q(x)$, you need to use the following decomposition rule:
\[\frac{P(x)}{Q(x)} = \frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+ \ldots+\frac{A_n}{(a_1x+b_1)^n}.\]
In your case, the decomposition you want will be of the form
\[\frac{s}{(s+1)^3} = \frac{A}{s+1}+\frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}\]
Can you take things from here?

Edit: Ninja'd by Random Variable.
 
I have one question. Why, when we have a square, do we do:
\[
\frac{A}{s + 1} + \frac{Bs+C}{(s + 1)^2}
\]
but for the cubic, we had to do:
\[
\frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}
\]
 
dwsmith said:
I have one question. Why, when we have a square, do we do:
\[
\frac{A}{s + 1} + \frac{Bs+C}{(s + 1)^2}
\]
but for the cubic, we had to do:
\[
\frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}
\]

We don't...only when we have quadratic factors in the denominator do we use linear numerators. If the degree of $P(x)$ is less than $2n$ then we may state the following:

i) For non-repeated quadratic factors:

$$\frac{P(x)}{\prod\limits_{k=1}^n\left(a_kx^2+b_kx+c_k \right)}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{a_kx^2+b_kx+c_k} \right)$$

ii) For repeated quadratic factors:

$$\frac{P(x)}{\left(ax^2+bx+c \right)^n}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{\left(ax^2+bx+c \right)^k} \right)$$
 
MarkFL said:
We don't...only when we have quadratic factors in the denominator do we use linear numerators. If the degree of $P(x)$ is less than $2n$ then we may state the following:

i) For non-repeated quadratic factors:

$$\frac{P(x)}{\prod\limits_{k=1}^n\left(a_kx^2+b_kx+c_k \right)}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{a_kx^2+b_kx+c_k} \right)$$

ii) For repeated quadratic factors:

$$\frac{P(x)}{\left(ax^2+bx+c \right)^n}=\sum_{k=1}^n\left(\frac{A_kx+B_k}{\left(ax^2+bx+c \right)^k} \right)$$

I don't understand what you mean.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K