I Partial trace and the reduced density matrix

Click For Summary
The discussion centers on the equation of motion for the reduced density matrix in the interaction picture, highlighting a potential paradox related to the cyclic property of the partial trace. It is clarified that the partial trace is not cyclic, which resolves the initial confusion. Additionally, another trace paradox involving the commutation relation between position and momentum operators is presented, leading to an apparent contradiction. The key to resolving this second paradox lies in understanding the implications of the trace of the identity operator being infinite. Overall, the conversation emphasizes the complexities and nuances of trace operations in quantum mechanics.
yucheng
Messages
232
Reaction score
57
TL;DR
Trace paradox?
From Rand Lectures on Light, we have, in the interaction picture, the equation of motion of the reduced density matrix:
$$i \hbar \rho \dot_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle = \Sigma_b \phi_b | \langle V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_AB) - Tr_B(\rho_AB V) = 0???$$
 
Physics news on Phys.org
yucheng said:
TL;DR Summary: Trace paradox?
I have corrected your LaTeX formula to make it readable and meaningful:
$$i \hbar \dot{\rho}_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle $$
$$= \Sigma_b \langle\phi_b | V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_{AB}) - Tr_B(\rho_{AB} V) = 0???$$
 
By the way, there is also another instructive trace paradox. Since ##[x,p]=i\hbar 1##, we have
$${\rm Tr} [x,p] ={\rm Tr}(i\hbar 1)=i\hbar {\rm Tr}1=i\hbar\infty$$
but also
$${\rm Tr} [x,p] ={\rm Tr} (xp) - {\rm Tr} (px) =0$$
so
$$0=i\hbar\infty$$
Can you resolve this one? :wink:

Hint: The solution of this paradox is entirely unrelated to the solution of the previous one. The key is to understand the meaning of ##{\rm Tr}1=\infty##, can we pretend that it is actually a big but finite number?
 
Last edited:
  • Like
Likes LittleSchwinger, vanhees71 and yucheng
@Demystifier
OMG I did not even realize it was published! I thought I just left it as a draft, but thanks for replying!

After doing some other problems, I realized that a partial trace is defined for a composite Hilbert space, which means that taking the trace with respect to the ##| b \rangle## basis breaks the common argument for commutation under the trace i,e, using the resolution of the identity because we have ##\Sigma \langle b' |\rho_{AB}| a,b \rangle \langle a,b| V |b' \rangle## instead.
 
  • Like
Likes vanhees71 and Demystifier
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K