Partial trace and the reduced density matrix

Click For Summary

Discussion Overview

The discussion revolves around the concept of the partial trace and its implications for the reduced density matrix in quantum mechanics. Participants explore the mathematical formulation and potential paradoxes associated with the trace operation, particularly in the context of the interaction picture and composite Hilbert spaces.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents an equation of motion for the reduced density matrix and questions its implications, suggesting a potential trace paradox.
  • Another participant corrects the LaTeX formatting of the equation and reiterates the question of whether the trace equals zero.
  • A third participant proposes that the solution to the paradox lies in the non-cyclic nature of the partial trace.
  • Another participant introduces a different trace paradox involving the commutation of position and momentum operators, questioning the resolution of this paradox.
  • A later reply discusses the definition of the partial trace in the context of composite Hilbert spaces and how it affects the argument for commutation under the trace.

Areas of Agreement / Disagreement

Participants express differing views on the implications of the partial trace and its cyclic properties, with no consensus reached on the resolution of the paradoxes presented.

Contextual Notes

Participants note that the definition of the partial trace is dependent on the structure of composite Hilbert spaces, which may influence the validity of certain arguments regarding trace operations.

yucheng
Messages
232
Reaction score
57
TL;DR
Trace paradox?
From Rand Lectures on Light, we have, in the interaction picture, the equation of motion of the reduced density matrix:
$$i \hbar \rho \dot_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle = \Sigma_b \phi_b | \langle V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_AB) - Tr_B(\rho_AB V) = 0???$$
 
Physics news on Phys.org
yucheng said:
TL;DR Summary: Trace paradox?
I have corrected your LaTeX formula to make it readable and meaningful:
$$i \hbar \dot{\rho}_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle $$
$$= \Sigma_b \langle\phi_b | V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_{AB}) - Tr_B(\rho_{AB} V) = 0???$$
 
By the way, there is also another instructive trace paradox. Since ##[x,p]=i\hbar 1##, we have
$${\rm Tr} [x,p] ={\rm Tr}(i\hbar 1)=i\hbar {\rm Tr}1=i\hbar\infty$$
but also
$${\rm Tr} [x,p] ={\rm Tr} (xp) - {\rm Tr} (px) =0$$
so
$$0=i\hbar\infty$$
Can you resolve this one? :wink:

Hint: The solution of this paradox is entirely unrelated to the solution of the previous one. The key is to understand the meaning of ##{\rm Tr}1=\infty##, can we pretend that it is actually a big but finite number?
 
Last edited:
  • Like
Likes   Reactions: LittleSchwinger, vanhees71 and yucheng
@Demystifier
OMG I did not even realize it was published! I thought I just left it as a draft, but thanks for replying!

After doing some other problems, I realized that a partial trace is defined for a composite Hilbert space, which means that taking the trace with respect to the ##| b \rangle## basis breaks the common argument for commutation under the trace i,e, using the resolution of the identity because we have ##\Sigma \langle b' |\rho_{AB}| a,b \rangle \langle a,b| V |b' \rangle## instead.
 
  • Like
Likes   Reactions: vanhees71 and Demystifier

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K