Is there a technical term in group theory for (what I would call) partially specified elements of a group?(adsbygoogle = window.adsbygoogle || []).push({});

I mean "partially specified" in the following sense:

An elements of a group acts as permuation on the set of elements of the group. So a group element can be considered to be a function that is specified by a set of ordered pairs. Suppose we have a set of ordered pairs of group elements that incompletely specifies a 1-1 function on the group. For example if the group elements are {a,b,c,d} we might have the set of ordered pairs { (a,b),(c,a)} which is missing a specification for (b,?) and (d,?).

If A is a partial specification then reversing the ordered pairs in A give a different partial specification which one might call the inverse specification. If A and B are two partial specification then the product can be defined as the partial specification given by forming the composition of the two mappings, insofar as we can do so from the given ordered pairs in A and B.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partially specified elements of a group?

Loading...

Similar Threads - Partially specified elements | Date |
---|---|

A Nonlinear regression which can be partially reduced to linear regression | Dec 11, 2016 |

I Partial Order - Reconciling Definitions by Garling and Goldrei | Oct 31, 2016 |

Partial order relations, on boolean algebra | Sep 14, 2013 |

Could Someone Explain Partial Dependence to me? | Aug 29, 2013 |

Specifying a covariance matrix | Feb 16, 2011 |

**Physics Forums - The Fusion of Science and Community**