Particle in a box: Finding <T> of an electron given a wave function

Click For Summary

Homework Help Overview

The discussion revolves around calculating the expectation value of the kinetic energy for an electron in a one-dimensional infinite potential well, commonly referred to as a "particle in a box" problem in quantum mechanics. Participants are examining the mathematical expressions and integrals involved in this calculation.

Discussion Character

  • Mathematical reasoning, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the validity of calculations related to the expectation value of kinetic energy, questioning the use of constants such as ##\hbar## and ##h##. There are also mentions of integrating the sine function and the implications of being in an energy eigenstate.

Discussion Status

The discussion is ongoing, with participants providing feedback on each other's calculations and clarifying conventions in quantum mechanics. There is an exploration of different interpretations regarding the use of constants and the necessity of integration in this context.

Contextual Notes

Some participants reference conventions in quantum mechanics literature regarding the use of ##\hbar## versus ##h##, indicating a potential source of confusion. The discussion also touches on the implications of being in an energy eigenstate and the relationship between kinetic and potential energy in this scenario.

Mayhem
Messages
425
Reaction score
317
Homework Statement
An electron in a carbon nanotube of length ##L## is described by the wavefunction ##\psi(x) = (2/L)^{1/2}\sin{(\pi x/L)}##. Compute the expectation value of the kinetic energy of the electron.
Relevant Equations
##\left \langle \Omega \right \rangle = \int \psi^* \hat{\Omega}\psi ~d\tau##
If ##\hat{T} = -\frac{\hbar}{2m}\frac{\mathrm{d^2} }{\mathrm{d} x^2}##, then the expectation value of the kinetic energy should be given as:
$$\begin{align*}
\left \langle T \right \rangle &= \int_{0}^{L} \sqrt{\frac{2}{L}} \sin{\left(\frac{\pi x}{L}\right)} \hat{T}\sqrt{\frac{2}{L}}\sin{\left(\frac{\pi x}{L}\right)} dx \\
&= \frac{-\hbar^2}{mL} \int_{0}^{L} \sin{\left(\frac{\pi x}{L}\right)} \frac{\mathrm{d^2} }{\mathrm{d} x^2} \sin{\left(\frac{\pi x}{L}\right)} dx \\
&= \frac{\pi^2 \hbar^2}{mL^3} \int_{0}^{L} \sin^2{\left(\frac{\pi x}{L}\right)} dx \\
&=\frac{h^2}{8mL^2}
\end{align*}
$$
Are my calculations correct?

To solve the integral ##\int \sin^2(f(x))) dx## I use the half angle identity for ##\sin(x)##.
 
  • Like
Likes   Reactions: bob012345, vanhees71 and Delta2
Physics news on Phys.org
Looks good, although generally ##\hbar## is used in QM.
 
  • Like
Likes   Reactions: vanhees71 and Mayhem
PeroK said:
Looks good, although generally ##\hbar## is used in QM.
Wouldn't the ##\hbar## reduce to ##h## in the last step, though?
 
  • Like
Likes   Reactions: vanhees71
Mayhem said:
Wouldn't the ##\hbar## reduce to ##h## in the last step, though?
Yes, but it's not conventional to switch between ##\hbar## and ##h## depending on whether you can cancel ##2\pi##. Most QM texts will stick with ##\hbar## by convention.
 
  • Like
  • Informative
Likes   Reactions: vanhees71 and Mayhem
PeroK said:
Yes, but it's not conventional to switch between ##\hbar## and ##h## depending on whether you can cancel ##2\pi##. Most QM texts will stick with ##\hbar## by convention.
Confusing, but who am I to tell quantum physicists that they are wrong.
 
  • Like
  • Haha
Likes   Reactions: Twigg, vanhees71 and Delta2
Just reviewed my book: it actually uses ##h## when ##\hbar## reduces as shown. I suppose I'm right in this particular case.
 
Mayhem said:
To solve the integral ##\int \sin^2(f(x))) dx## I use the half angle identity for ##\sin(x)##.
An important point of this problem is to realize that, in this case, the expectation value of the kinetic energy is equal to the energy of the ground state because the particle is in an energy eigenstate and the potential energy is zero. There is no need to integrate.
 
Mayhem said:
Just reviewed my book: it actually uses ##h## when ##\hbar## reduces as shown. I suppose I'm right in this particular case.
Modern texts and tracts use ##\hbar## exclusively I am told.
The reason is probably having to be different.
Same applies when all of a sudden ## m_0 ## in relativity is taboo. So we said goodbye to ## E = mc^2 ## for moving particles. It was good enough for Feynman but not for us. :frown:
 
rude man said:
Modern texts and tracts use ##\hbar## exclusively I am told.
The reason is probably having to be different.
Same applies when all of a sudden ## m_0 ## in relativity is taboo. So we said goodbye to ## E = mc^2 ## for moving particles. It was good enough for Feynman but not for us. :frown:
IMO, it is good to keep in mind that ##\hbar## is used interchangeably with ##h##, but I honestly err on the side of unambiguous notation.
 
  • #10
To elaborate, perhaps a bit unnecessarily, on post 7:
Given ## \psi(x) = (2/L)^{1/2} sin(\pi x/L) ## in a box of length L,
The energy eigenstate n (collapsed wave function) of a particle in that box is
## \psi(x)_{E_n} = (2/L)^{1/2}~sin (n\pi x /L) , 0~<=x~<=L ##
and ## \psi(x) = \Sigma_n~ A_n~ \psi_{E_n} (x) ##
with ##A_n = \int_0^L ~\psi^*_{E_n} (x) ~ \psi(x) ~dx ##
= 1, n=1 and = 0 for any other n
so there is only one allowed energy state with ## E = \hbar^2 \pi^2/2mL^2 ##
(from the eigenstate Schroedinger equation).
 
Last edited:

Similar threads

Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K