Partition function from the density of states

Click For Summary
The discussion focuses on calculating the canonical partition function from a given density of states, specifically addressing the integral involving the step function and the incomplete gamma function. The user successfully computes the first two terms of the partition function but struggles with the third term, which requires evaluating an integral that changes its lower bound due to the step function. A suggestion is made to replace the factor \(E^N\) with \((-1)^N\) times the N-th derivative of the exponential with respect to \(\beta\), simplifying the integral significantly. This approach allows for a straightforward evaluation of the integral, leading to the final expression for the canonical partition function. The discussion emphasizes the importance of understanding the manipulation of integrals and the application of gamma functions in statistical mechanics.
snatchingthepi
Messages
145
Reaction score
37
Homework Statement
See post
Relevant Equations
See post
I'm given the following density of states

$$ \Omega(E) = \delta(E) + N\delta(E-\Delta) + \theta(E-\Delta)\left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N $$

where $ \Delta $ is a positive constant. From here I have to "calculate the canonical partition function as a function of $$ x=\beta\Delta $$ using the incomplex gamma function

$$ \Gamma(n,x) = \int_x^\infty dt e^{-t} t^{n-1} $$

I know this can be solved for a partition function by taking a Laplace transform of the density of states. I can do the first two term very easily, but for the third term

$$ z_{can} = \int_0^\infty \theta(E-\Delta)\left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N exp[-\beta E] dE $$

I'm not sure how to go forward from here. I've never seen an integral like this. I am thinking the step function changes the integral lower bound, but I'm kinda strung out so near the end of term, and am not seeing where to go now. Can anyone please help out?
 
Physics news on Phys.org
Please tell us exact step where you are stuck. The integral is doable using incomplete gamma functions
 
I am unsure *how* to do this integrla with the incomplete gamma function. My thought hit a dead-end at

$$ z_{can} = \int_0^\infty \theta(E-\Delta)\left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N exp[-\beta E] dE $$

$$ z_{can} = \int_\Delta^\infty \left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N exp[-\beta E] dE $$

let $$ x=\beta \Delta $$

and for the incomplete gamma function let

$$ t = \frac{-xE}{\Delta}, dt = \frac{-x}{\Delta} dE $$

so

$$ z_{can} = \left(\frac{1}{N \Delta}\right)^N \int_x^\infty dt t^N exp[-t] $$

$$ z_{can} = \left(\frac{1}{N \Delta}\right)^N \Gamma(N+1, x) $$

I'm not convinced of my math in these last few steps.
 
Last edited:
snatchingthepi said:
Homework Statement:: See post
Relevant Equations:: See post

I'm given the following density of states

$$ \Omega(E) = \delta(E) + N\delta(E-\Delta) + \theta(E-\Delta)\left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N $$

where $ \Delta $ is a positive constant. From here I have to "calculate the canonical partition function as a function of $$ x=\beta\Delta $$ using the incomplex gamma function

$$ \Gamma(n,x) = \int_x^\infty dt e^{-t} t^{n-1} $$

I know this can be solved for a partition function by taking a Laplace transform of the density of states. I can do the first two term very easily, but for the third term

$$ z_{can} = \int_0^\infty \theta(E-\Delta)\left(\frac{1}{\Delta}\right)\left(\frac{E}{N\Delta}\right)^N exp[-\beta E] dE $$

I'm not sure how to go forward from here. I've never seen an integral like this. I am thinking the step function changes the integral lower bound, but I'm kinda strung out so near the end of term, and am not seeing where to go now. Can anyone please help out?
You could also replace the factor ##E^N## by ##(-1)^N## times the N-th derivative of the exponential with respect to ##\beta##. The integral will be trivial and then you can apply the N-th derivative wrt ##\beta## on the result to get the final answer.
 
  • Like
Likes snatchingthepi

Similar threads

Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
19
Views
3K
Replies
2
Views
2K