Graduate Path integral computes time-ordered products

Click For Summary
The discussion focuses on the transition from path integral expressions to time-ordered products in quantum field theory. It highlights that the path integral formulation can compute time-ordered products by breaking down operators into smaller components and inserting resolutions of identity at different times. This process effectively rearranges fields to their time-ordered locations. Additionally, it notes that classical fields in the path integral do not have ordering issues, contrasting with non-commuting operators in quantum mechanics. The conclusion emphasizes the necessity of time-ordering in the context of operator non-commutativity.
spaghetti3451
Messages
1,311
Reaction score
31
In general,

##\displaystyle{\langle q_{f}|e^{-iHt/\hbar}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}##

and

##\displaystyle{\langle q_{f}|\hat{Q}(t)|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t).##How can one switch from the above expressions to the following?

##\displaystyle{\langle q_{f}|T\{\hat{Q}(t_{1})\hat{Q}(t_{2})\}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t_{1})q(t_{2})##

In other words, why does the path integral compute time-ordered products?
 
Physics news on Phys.org
The technical details are given in any standard QFT textbook (see the relevant section on path integrals), so I won't reproduce them here (I'm also lazy to type that many equations haha). But intuitively, there are two quick ways to understand why this should be the case:

(1) If you examine how the path integral really is defined (my instructor in particular always emphasized that the compact notation that you always see is often misleading and usually useless for calculations - you have to go back to the original complete form), we actually broke up the operator into little bits at different times and inserted multiple resolutions of the identity (also at different times). This operation is in fact what is responsible for "moving" the fields to the respective time-ordered locations.

(2) In the path integral expression, the fields that appear there are classical fields and the ordering doesn't matter. This means that in the canonical form of the propagator, the order in which you write the field operators should not matter as well. One way to fix this is to well, have time-ordering. Of course this doesn't explain why time-ordering arises to begin with, but it tells us that
<br /> \int\mathcal{D}q(t) e^{iS[q]/\hbar} q(t_{1})q(t_{2}) = \langle q_{f}|\hat{Q}(t_{1})\hat{Q}(t_{2})|q_{i}\rangle<br /> cannot be correct since ##\hat{Q}(t_{1})## and ##\hat{Q}(t_{2})## do not commute whereas ##q(t_{1})## and ##q(t_{2})## do.
 
  • Like
Likes vanhees71
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K