1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Pauli Equation - Simple operator algebra question

  1. May 16, 2016 #1
    1. The problem statement, all variables and given/known data
    I am watching a course on Relativistic Quantum Mechanics to freshen up, and I have found to have some issues regarding simple operator algebra. This particular issue on the Pauli Equation (generalization of the Schrodinger equation that includes spin corrections) in an electromagnetic field, arises from the cross product of a linear combination of operators, as shown below (and in the video link - time 18:18)

    I understand that when the operators don't commute, the cross product isn't zero, but how is it shown explicitly that the only non-trivial effect is the [itex] \vec{p}\times\vec{A} [/itex] that survives? What about the other term diagonal in the two operators?

    2. Relevant equations
    [tex] \left(\vec{p}-\frac{e}{c}\vec{A}\right)\left(\vec{p}-\frac{e}{c}\vec{A}\right)=\frac{i\hbar e}{c}
    \vec{\nabla}\times\vec{A} [/tex]

    3. The attempt at a solution
    I've been arguing why the second term [itex] \propto \vec{A}\times\vec{p} [/itex] won't contribute but can't seem to reach it. Thinking about a crutch function didn't quite help as well. I'm pretty sure this is simple but can't think of it.
  2. jcsd
  3. May 16, 2016 #2
    Seems I've pretty much forgot all of my vector calculus as well as operator priorities. I got the right thing though after some research on my textbooks

    Rule 7 on Griffiths E-M: [itex] \vec{\nabla}\times\left(f\cdot\vec{A}\right)=f\left(\vec{\nabla}\times\vec{A}\right)-\vec{A}\times\left(\vec{\nabla}\cdot f\right) [/itex]
    Also the priority of operator action starts from the left and encompasses all through to right, so our action should be:
    [tex] \left[\left(\vec{p}-\frac{e}{c}\vec{A}\right)\left(\vec{p}-\frac{e}{c}\vec{A}\right)\right]g=-\frac{e}{c}\vec{p}\times\left(\vec{A}g\right)-\frac{e}{c}\vec{A}\times\left(\vec{p}g\right)=i\hbar\frac{e}{c}\vec{\nabla}\times\left(\vec{A}g\right)+i\hbar\frac{e}{c}\vec{A}\times\left(\vec{\nabla}g\right)=i\hbar\frac{e}{c}g\left(\vec{\nabla}\times\vec{A}\right)-i\hbar\frac{e}{c}\vec{A}\times\left(\vec{\nabla}g\right)+i\hbar\frac{e}{c}\vec{A}\times\left(\vec{\nabla}g\right)=i\hbar\frac{e}{c}\left(\vec{\nabla}\times\vec{A}\right)g [/tex]

    Correct me if I'm wrong, otherwise I think it's done with.
  4. May 21, 2016 #3


    User Avatar
    Science Advisor
    Homework Helper

    If the vector multiplication in the left side of
    \left(\vec{p}-\frac{e}{c}\vec{A}\right)\left(\vec{p}-\frac{e}{c}\vec{A}\right)=\frac{i\hbar e}{c}
    is actually a cross product, then your derivation is correct.
  5. May 26, 2016 #4
    Ah, a misprint, will fix, thank you for the confirmation!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted