Ok, here is what I found out (I have to write something because forum moderators again gave me a warning, this time for not knowing how to start solving a problem... thanks guys.)
Let's say that Pauli matrices are basis vectors :=\begin{Bmatrix}<br />
\begin{bmatrix}<br />
0 &1 \\ <br />
1& 0<br />
\end{bmatrix},\begin{bmatrix}<br />
0 &-i \\ <br />
i &0 <br />
\end{bmatrix},\begin{bmatrix}<br />
1 & 0\\ <br />
0 & -1<br />
\end{bmatrix}<br />
\end{Bmatrix} for vector space V. (I checked their linear independence, but there is no need to
write the proof here).
Since Pauli matrices are basis vectors for vector space V, any other vector from V is a linear combination of basis vectors:
\alpha \begin{bmatrix}<br />
0 &1 \\ <br />
1& 0<br />
\end{bmatrix}+\beta \begin{bmatrix}<br />
0 &-i \\ <br />
i &0 <br />
\end{bmatrix}+\gamma \begin{bmatrix}<br />
1 & 0\\ <br />
0 & -1<br />
\end{bmatrix}=\begin{bmatrix}<br />
x_{1} & x_{2}\\ <br />
x_{3}& x_{4}<br />
\end{bmatrix}, where \begin{bmatrix}<br />
x_{1} & x_{2}\\ <br />
x_{3}& x_{4}<br />
\end{bmatrix} = X is a matrix in V. If I sum the left side, than I get something like this\begin{bmatrix}<br />
\gamma & \alpha -\beta i\\ <br />
\alpha +\beta i& -\gamma <br />
\end{bmatrix}=\begin{bmatrix}<br />
x_{1} & x_{2}\\ <br />
x_{3}& x_{4}<br />
\end{bmatrix}.
Now we can see that for any \gamma the X is traceless because trX=\gamma +(-\gamma )=0 and X is also hermitian (complex conjugation and transponsed):
X=\begin{bmatrix}<br />
\gamma & \alpha -\beta i\\ <br />
\alpha +\beta i& -\gamma <br />
\end{bmatrix}, X^{H}=\begin{bmatrix}<br />
\gamma & \overline{\alpha +\beta i}\\ <br />
\overline{\alpha -\beta i}& -\gamma <br />
\end{bmatrix}=X^{H}=\begin{bmatrix}<br />
\gamma & \alpha -\beta i\\ <br />
\alpha +\beta i& -\gamma <br />
\end{bmatrix}, where \alpha ,\beta ,\gamma \in \mathbb{R} so V is also three dimensional or in other words, dimV=3
Doesn this sound about right?