jamesmcm
- 1
- 0
Homework Statement
Question: Show that the solutions of the wave equation for a square drum head of side L can be written as:
u(x,y,t)=\sum_{k_x , k_y} A_{k_x , k_y} e^{-ik_x x - ik_y y}e^{i\omega t}
where:
\omega = a \sqrt{{k_x}^2 + {k_y}^2}
Where a is the wave-velocity and A_{k_x , k_y} is a constant independent of x, y and t.
Hint:
The PDE is:
\frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = \nabla ^2 u(x,y,t)
Take u=X(x)Y(y)T(t).
Homework Equations
The actual PDE to solve is: \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = \nabla ^2 u(x,y,t)
The PDE is separable so u=X(x)Y(y)T(t).
The Attempt at a Solution
By assuming u is separable we see:
YTX'' + XTY'' = \frac{1}{a^2} XYT''
\therefore \frac{1}{a^2} \left ( \frac{X''}{X} + \frac{Y''}{Y} \right ) = \frac{T''}{T} = -\omega^2
Solve ODE for T:
T'' + \omega^2 T = 0 ~ \therefore ~ m^2 = - \omega^2 ~ \therefore ~ m=\pm i\omega ~ \therefore ~ T=Ae^{+i\omega t} + Be^{-i\omega t}
Let \frac{1}{a^2} \frac{X''}{X} = -{k_x}^2, giving us the condition -a^2{k_x}^2 -a^2{k_y}^2 =-\omega^2:
\therefore m^2 + a^2 k_x =0 \therefore m^2 = -a^2 {k_x}^2 \therefore m=\pm a{k_x}i \therefore X=Ce^{+ia{k_x}x} + De^{-ia{k_x}x}
Similarly:
Y=Ee^{+i{ak_y}y} + Fe^{-i{ak_y}y}
And so:
u=XYT=\left ( Ae^{+i\omega t} + Be^{-i\omega t} \right ) \left (Ce^{+ia{k_x}x} + De^{-ia{k_x}x} \right ) \left(Ee^{+ia{k_y}y} + Fe^{-ia{k_y}y} \right )
How do we discount the positive roots for X and Y and the negative root for T, to obtain the necessary answer?
Mathbin link, in case I screwed up this tex: http://mathbin.net/55696"
Last edited by a moderator: