MHB Pebble Challenge: Who Wins & Why?

  • Thread starter Thread starter sadsadsadsa
  • Start date Start date
  • Tags Tags
    Challenge
sadsadsadsa
Messages
15
Reaction score
0
There are 100 pebbles on the table. There are two players, A and B, who move alternatively. Player A moves first. The rules of the game are the same for both players: at each move they can remove one, two, three, four of five pebbles. The winner is the player who takes the last pebble. Who is guaranteed to win provided that he plays properly? Convince me why you think this. Same question if the one who takes the last pebble loses.
 
Mathematics news on Phys.org
sadsadsadsa said:
There are 100 pebbles on the table. There are two players, A and B, who move alternatively. Player A moves first. The rules of the game are the same for both players: at each move they can remove one, two, three, four of five pebbles. The winner is the player who takes the last pebble. Who is guaranteed to win provided that he plays properly? Convince me why you think this. Same question if the one who takes the last pebble loses.

Suppose we start the game with 5 or less pebbles, then A can take them all and wins.
When we start with 6 pebbles, A has to take one, but can't take them all, so the next player will win.
With 7-11 pebbles, A can reduce the number to 6, bringing B to a position that he will be forced to let A win.

Generally, the winning strategy is to reduce the pebbles to a multiple of 6.
Then, when the pebbles are down to 6, the opponent will be forced to let you win.
When we start with 100 pebbles, A should start with 4 pebbles, guaranteeing his win (since $96 = 16\times 6$).

When the one who takes the last pebble loses, we want to end at 1 pebble.
The winning strategy is then to reduce to a multiple of 6 plus 1.
So A should start with 3 pebbles (since $97 = 16\times 6 + 1$).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top