Penrose equation for a vacuum spacetime

Click For Summary
SUMMARY

The discussion centers on the Penrose equation for vacuum spacetime, specifically analyzing the Bianchi identity and its implications for the Riemann tensor. The participants explore the relationship between covariant derivatives of the Riemann tensor and the symmetries inherent in its structure. A reference to an arXiv paper is provided for further insights into the topic, particularly pages 2 to 4, which may contain relevant information to clarify the discussion points.

PREREQUISITES
  • Understanding of Bianchi identities in differential geometry
  • Familiarity with the Riemann curvature tensor
  • Knowledge of covariant derivatives and their properties
  • Basic grasp of vacuum solutions in general relativity
NEXT STEPS
  • Study the implications of the Bianchi identity on the Riemann tensor
  • Examine the symmetries of the Riemann tensor in detail
  • Review the arXiv paper referenced for deeper insights into the Penrose equation
  • Explore advanced topics in general relativity related to vacuum spacetimes
USEFUL FOR

Researchers, physicists, and students in theoretical physics focusing on general relativity, particularly those interested in the mathematical foundations of vacuum solutions and the properties of the Riemann tensor.

etotheipi
Homework Statement
Derive the Penrose equation for a vacuum spacetime$$\nabla^{\lambda} \nabla_{\lambda} R_{\mu \nu \rho \sigma} = 2 {R^{\kappa}}_{\mu \lambda \sigma} {R^{\lambda}}_{\rho \kappa \nu} - 2{R^{\kappa}}_{\nu \lambda \sigma} {R^{\lambda}}_{\rho \kappa \mu} - {R^{\kappa}}_{\lambda \sigma \rho} {R^{\lambda}}_{\kappa \mu \nu}$$
Relevant Equations
N/A
Okay so for this one we can consider the Bianchi identity again$$\begin{align*}

\nabla_{[\lambda}R_{\sigma \rho] \mu \nu} = 2 \nabla_{\lambda} R_{\sigma \rho \mu \nu} + 2\nabla_{\rho} R_{\lambda \sigma \mu \nu} + 2\nabla_{\sigma} R_{\rho \lambda \mu \nu} &= 0 \\

\nabla^{\lambda} \nabla_{\lambda} R_{\sigma \rho \mu \nu} &= \nabla^{\lambda} \nabla_{\rho} R_{\sigma \lambda \mu \nu} + \nabla^{\lambda} \nabla_{\sigma} R_{\lambda \rho \mu \nu} \\

\nabla^{\lambda} \nabla_{\lambda} R_{\sigma \rho \mu \nu} &= g^{\epsilon \lambda} \nabla_{\epsilon} \nabla_{\rho} R_{\sigma \lambda \mu \nu} + g^{\epsilon \lambda} \nabla_{\epsilon} \nabla_{\sigma} R_{\lambda \rho \mu \nu} \end{align*}$$Here I wrote it in a form that's suggestive of another identity$$(\nabla_a \nabla_b - \nabla_b \nabla_a){T^{c_1, \dots, c_k}}_{d_1,\dots,d_l} = \sum_{j=1}^{l} {R_{abd_j}}^e {T^{c_1, \dots, c_k}}_{d_1, \dots, e, \dots d_l}
- \sum_{i=1}^{k} {R_{abe}}^{c_i} {T^{c_1, \dots, e, \dots, c_k}}_{d_1, \dots, d_l}
$$Let's say we consider ##T = R##, i.e.$$\begin{align*}(\nabla_{\epsilon} \nabla_{\rho} - \nabla_{\rho} \nabla_{\epsilon}) R_{\sigma \lambda \mu \nu} &= {R_{\epsilon \rho \sigma}}^{e} R_{e\lambda \mu \nu} + {R_{\epsilon \rho \lambda}}^{e} R_{\sigma e \mu \nu} + {R_{\epsilon \rho \mu}}^{e} R_{\sigma \lambda e \nu}+ {R_{\epsilon \rho \nu}}^{e} R_{\sigma \lambda \mu e}\end{align*}$$Is there a way to tidy this up using some other symmetries of the Riemann tensor and obtain the desired result? Thanks
 
  • Like
Likes   Reactions: JD_PM
Physics news on Phys.org

Similar threads

  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K