Periodic boundary conditions -> Shouldn't supports hinder all motion?

AI Thread Summary
The discussion revolves around understanding periodic boundary conditions in the context of mechanical properties of a Representative Volume Element (RVE). The user questions the logic behind corner nodes being fixed while still allowing for displacement at opposing nodes, leading to confusion about the underlying equations. Clarifications are provided regarding the coupling of corner nodes to internal nodes, which allows for the application of loads without conflict. The conversation also touches on practical aspects of using Abaqus for simulations, including how to handle constraints and apply loads effectively. The importance of checking specific output files for warnings during analysis is emphasized for troubleshooting.
NewStuff
Messages
3
Reaction score
1
Hello everyone,

I am currently trying to understand periodic boundary conditions for the mechanical investigation of mechanical properties of a RVE. I found a good video explaining the theory behind it:

But something is unclear to me: At the above linked time step, the individual conical equations are shown (basically saying, that nodes on opposite faces should have the same displacement and thereby connecting the different node pairs). So far this is logical.

But once I look at the corner nodes (1&2 in the video) it becomes a little unclear: If I use a fixed support at Node 1 to prevent rigid body motion (which equals a 0/0 displacement) shouldn't that also restrain Node 2 to a 0/0 displacement (according to the equation that is shown)?

Now in the video this issue does not arise, because the equations for the corner nodes are connected to the equations of the internal nodes: InternalNodeA - InternalNodeB = CornerNode1 - CornerNode2

In this connected form, it is not a problem any more, because if the displacement of CornerNode1 = 0 than there is still this equation remaining:
InternalNodeA - InternalNodeB = CornerNode2

And now I can apply my displacement load at Corner Node 2 and everything is fine. But looking at the original equation (CornerNode1-CornerNode2 = 0) this wouldn't work.

So in short:
(1) InternalNodeA - InternalNodeB = 0
(2) CornerNode1 - CornerNode2 = 0
(3) InternalNodeA - InternalNodeB = CornerNode1 - CornerNode2

Equation 2 by it self does not make sense to me as CornerNode1 is a fixed support and CornerNode2 is used to apply a load. Once (1)&(2) are connected they work.

It is most likely just a simple thinking error, but I would really like to understand the reason behind it.

Kind regards
Mike
 
Engineering news on Phys.org
Welcome to PF.
NewStuff said:
I am currently trying to understand periodic boundary conditions for the mechanical investigation of mechanical properties of a RVE.
Do you mean REV? https://en.wikipedia.org/wiki/Representative_elementary_volume
NewStuff said:
I found a good video explaining the theory behind it:
A video alone is generally not a great thread starter. Could you please summarize your question using your own screenshots of your simulations? Thanks.
 
Thanks Berkeman :)

berkeman said:
Yes, but I think REV and RVE can be used interchangeably.
berkeman said:
A video alone is generally not a great thread starter. Could you please summarize your question using your own screenshots of your simulations? Thanks.

The simulation currently poses no problem, what I am wondering about is the theoretical background.

But I can try it again. So the underlying equations of periodic boundary conditions are as follows:

pbc-constraint-equations-png.png


Source: https://www.physicsforums.com/threa...-workbench-modal-analysis.985108/post-6317474

So if look at these equations isolated: If u1 = 0 than u3 should be 0 as well. This would be the case if Node 1 was a fixed support.

But, if I combine the equations (e.g. the bottom two on the left) something like this results:

u1-u3=u7-u8.

Now you set u1 = 0 and apply a displacement constraint to Node3 (which represents the applied load). If these combined equations are implemente in Abaqus it does result in periodic deformations, so it works. As an example (just for demonstration purposes) a combined shear/tensile load (the bottom left node is a fixed support):
After.PNG


But the underlying equations now don't seem to valid anymore (to my mind). And I can't figure out why. What these combined equations seem to do is couple the corner nodes to the internal nodes. But for some reason, I can't wrap my head around the logic behind that (or how it works)

A more graphical illustration (from the video linked above):

EquationsCombined.PNG


Kind regards
Mike
 
Last edited:
In practice, RVE is more common than REV. The former stands for Representative Volume Element.

The goal of this equation constraint in Abaqus is to equalize displacements in a selected DOF for two nodes/node sets. And if you want to apply prescribed displacement then you could do it as it’s described in that older thread you cited.

Check the output files generated during this analysis, Abaqus may warn you about some conflicting comstraints and tell you how ot handled them.
 
  • Informative
  • Like
Likes NewStuff and berkeman
FEAnalyst said:
The goal of this equation constraint in Abaqus is to equalize displacements in a selected DOF for two nodes/node sets. And if you want to apply prescribed displacement then you could do it as it’s described in that older thread you cited.
I basically want to apply combined shear and tensile loads (not necessary via displacement). If I only couple opposing nodes, how do I then introduce the load? Via forces? And how do I support the RVE?
FEAnalyst said:
Check the output files generated during this analysis, Abaqus may warn you about some conflicting comstraints and tell you how ot handled them.
Which specific file should I look at? The .log files of the Jobs do not show any error messages.
 
NewStuff said:
I basically want to apply combined shear and tensile loads (not necessary via displacement). If I only couple opposing nodes, how do I then introduce the load? Via forces? And how do I support the RVE?
Check the Micromechanics plugin for Abaqus, it automates the process of RVE definition and allows you to apply various driving fields, including strain.

NewStuff said:
Which specific file should I look at? The .log files of the Jobs do not show any error messages.
Warning messages can be found in .dat and .msg files.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Carburetor CFM A Holley Carb rated at 500 cfm 2 barrel carb has venturi diameter of 1.3/8". There are 2 barrel carbs with 600 cfm and have 1.45 diameter venturi. Looking at the area the 1.378 bore has 5.9 sq. Inch area. The 1.45 dia. has 6.6 sq. inch. 5.9 - 6.6 = 0.70 sq. inch difference. Keeping the 500 cfm carb in place, if I can introduce 0.7 sq inch more area in the intake manifold, will I have the same potential horsepower as a 600 cfm carb provide? Assume I can change jetting to...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly

Similar threads

Replies
3
Views
3K
Replies
7
Views
3K
Replies
4
Views
2K
Replies
8
Views
1K
Replies
3
Views
1K
Replies
3
Views
3K
Back
Top