- #1
Ted123
- 446
- 0
Say we have the symmetric group [itex]S_5[/itex].
The permutations of [itex]\{2,5\}[/itex] are the identity [itex]e[/itex] and the transposition [itex](25)[/itex].
But what are all the permutations of [itex]\{3\}[/itex]? Is it [itex]e[/itex] and the 1-cycle [itex](3)[/itex]?
The permutations of [itex]\{2,5\}[/itex] are the identity [itex]e[/itex] and the transposition [itex](25)[/itex].
But what are all the permutations of [itex]\{3\}[/itex]? Is it [itex]e[/itex] and the 1-cycle [itex](3)[/itex]?