Perturbation to Flat Space Metric: Geodesic Equation

Click For Summary
SUMMARY

The discussion focuses on the perturbation of the flat space metric and its implications for the geodesic equation in a non-relativistic context. The participants analyze the metric tensor's components, particularly how the perturbation, denoted as hμν, affects the calculation of the inverse metric tensor gμν. They establish that for small perturbations where |hμν| << 1, the inverse metric can be approximated as gμν ≈ ημν - hμν. The conversation also explores the implications of non-zero off-diagonal terms in the general case, emphasizing the need for careful consideration of matrix formulations in these calculations.

PREREQUISITES
  • Understanding of the geodesic equation in general relativity.
  • Familiarity with metric tensors and their properties.
  • Knowledge of perturbation theory in the context of physics.
  • Basic matrix algebra, particularly involving inverses and products.
NEXT STEPS
  • Study the derivation of the geodesic equation in general relativity.
  • Learn about perturbation methods in general relativity, focusing on metric perturbations.
  • Explore the implications of off-diagonal terms in metric tensors.
  • Investigate the matrix formulation of tensor operations in the context of general relativity.
USEFUL FOR

This discussion is beneficial for theoretical physicists, graduate students in general relativity, and researchers focusing on gravitational theories and metric perturbations.

Apashanka
Messages
427
Reaction score
15
From the geodesic equation
d2xμ/dΓ2μ00(dt/dΓ)2=0,for non-relativistic case ,where Γ is the proper time and vi<<c implying dxi/dΓ<<dt/dΓ.
Now if we assume that the metric tensor doesn't evolve with time (e,g gij≠f(t) ) then Γμ00=-1/2gμs∂g00/∂xs.
If we here assume that the metric components of the curved part is a perturbation on the flat part
Then gμϑμϑ(flat part)+hμϑ(perturbation)
After which I got stuck in calculating the inverse components of the metric tensor gϑμ which is needed in Γμ00 above.
Can anyone please help me in sort put this.
Thank you.
 
Physics news on Phys.org
because all components of ##h## are assumed to satisfy ##|h_{\mu \nu}| <<1## and also off diagonal terms are zero. Then the inverse is just $$g^{\mu \nu} = \frac{1}{\eta_{\mu \nu} + h_{\mu \nu}} \approx \eta_{\mu \nu} - h_{\mu \nu}$$ This follows from the observation: if ##a^2 - b^2 = (a + b)(a-b) = \approx 1## then ##1 / (a+b) \approx a-b##.
 
kent davidge said:
because all components of ##h## are assumed to satisfy ##|h_{\mu \nu}| <<1## and also off diagonal terms are zero. Then the inverse is just $$g^{\mu \nu} = \frac{1}{\eta_{\mu \nu} + h_{\mu \nu}} \approx \eta_{\mu \nu} - h_{\mu \nu}$$ This follows from the observation: if ##a^2 - b^2 = (a + b)(a-b) = \approx 1## then ##1 / (a+b) \approx a-b##.
Yes it is but if the off diagonal terms are non-zero for the general case what will be it??
 
Apashanka said:
Yes it is but if the off diagonal terms are non-zero for the general case what will be it??
For the general case, consider that $$g_{\kappa \sigma}g^{\sigma \rho} = (\eta_{\kappa \sigma} + h_{\kappa \sigma})(\eta^{\sigma \rho} \pm h^{\sigma \rho}) = \delta_\kappa{}^\rho \pm \eta_{\kappa \sigma} h^{\sigma \rho} + \eta^{\sigma \rho} h_{\kappa \sigma} + \mathcal O (h^2) \approx \delta_\kappa{}^\rho \pm h_\kappa{}^\rho + h_\kappa{}^\rho$$ this will be equal to ##\delta_\kappa{}^\rho## only if we use the minus sign.

(indices are raised and lowered with ##\eta##)
 
From matrix formulation if matrices A,B and C are given with their inverses $$A^{-1},B{^-1 }$$and $$C^{-1}$$ and given A=B+C
If $$A^{-1}=B^{-1}+C^{-1}$$ ,then $$I=2I+BC^{-1}+CB^{-1}$$$$I_{ik}+b_{ij}c^{jk}+c_{ip}b^{pk}$$$$\delta_{i}^{k}+\eta_{ij}h^{jk}+h_{ip}\eta^{pk}$$$$\delta_{i}^{k}+2h^k_i=0$$
Similarly for $$A^{-1}=B^{-1}-C^{-1}$$ then $$CB^{-1}-BC^{-1}=I$$$$h_{ij}\eta^{jk}-\eta_{ip}h^{pk}=I_{ik}$$ $$h_i^k-h_i^k=\delta_i^k$$...(1)
Now if $$g_{ij}=\eta_{ij}+h_{ij}$$ and $$g^{ij}=\eta^{ij}-h^{ij}$$( where ##\eta^{ij}## is the inverse element of ##\eta_{ij}## and similarly for h also),to satisfy equation (1) that hij is not the inverse element of hij? Is it??
 
The notation ##h_{\kappa \sigma} h^{\sigma \rho}## means ##h_{\kappa \sigma} \eta^{\sigma \lambda} \eta^{\rho \mu} h_{\lambda \mu} = h_\kappa{}^\lambda h_\lambda{}^\rho##.
This means you are multiplying ##h## with itself: the ##\kappa##-th colunm of ##h## is being multiplied with the ##\rho##-th row of ##h##.

However ##\eta_{\kappa \sigma} \eta^{\sigma \rho} = \delta_\kappa{}^\rho## because ##\eta^{\sigma \rho}## is really the inverse of ##\eta_{\sigma \rho}##.
 
I'm not sure what you want to calculate, but for static solutions you can always diagonalize the metric such that the line element is invariant under a time reflection. Then the inverse of the metric is easily found.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 71 ·
3
Replies
71
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K