Phase of a wave - My interpretation

Click For Summary

Homework Help Overview

The discussion revolves around the concept of phase in wave mechanics, specifically how it relates to the mathematical representation of traveling waves. Participants explore the interpretation of the phase equation and its implications for understanding wave behavior over time.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to explain their interpretation of the phase of a wave using a specific point in the wave's disturbance and its movement over time. Other participants provide definitions of phase and discuss the reasoning behind the phase equation, questioning the original poster's understanding and offering clarifications.

Discussion Status

The conversation is ongoing, with participants actively engaging in clarifying the definition of phase and its mathematical representation. Some guidance has been provided regarding the relationship between the phase and the speed of the wave, but no consensus has been reached on all aspects of the original poster's interpretation.

Contextual Notes

Participants are working within the constraints of a homework help context, focusing on understanding rather than providing direct solutions. The original poster has expressed a desire for feedback on their interpretation, indicating a willingness to learn from the discussion.

Shreya
Messages
187
Reaction score
64
Homework Statement
I have always wondered what the phase of a wave means. I came up with something and I would really appreciate if someone could help me verify it and possibly find out flaws in it.
Relevant Equations
My textbook says: $$y = A \sin (kx - \omega t)$$ $$ y = A \sin k (x - vt)$$ $$y=A \sin (\frac {2\pi} {\lambda} (x - vt)$$ as ##\frac w k = v##
Let's begin my interpretation: (please refer the image below). There I have considered a point in the disturbance/wave (let's call it ##P##),(not a particle of the medium) and I follow it as the wave progresses. The solid curve is a Pic of the wave at ##t=0## and the dotted one is its Pic at some later time. The point in the disturbance has moved by ##vt##. So, the ##x - vt## in the equation can be interpreted as the intital distance of point P. On Dividing that by ##\lambda##, we get 'what part of the cycle was the point at initially' or the initial state. And on multiplying it by ##2\pi##, we are coverting that to 'what part of a complete revolution'. Finally taking the ##\sin## of it and multiplying with ##A## we get the ##y## value.

I would love to see comments on this & Understand any mistakes I've made. Thanks in Advance.
(Edit: Sorry for the blurry image, I have updated it)

20221015_200536.jpg
 
Last edited:
Physics news on Phys.org
The definition of phase is the argument of the harmonic function, i.e. what's between the parentheses. It the angle the sine (or cosine) of which you are to consider. In a traveling wave a constant phase travels at the speed of propagation of the wave.
 
  • Like
Likes   Reactions: Shreya
kuruman said:
The definition of phase is the argument of the harmonic function, i.e. what's between the parentheses. It the angle the sine (or cosine) of which you are to consider
Yes, I understand that. But, my attempt above was to justify why it is what it is or, rather, why we put ##kx-\omega t## as the phase.
 
Last edited:
Shreya said:
Yes, I understand that. But, my attempt above was to justify why it is what it is or, rather, why we put ##kx-\omega t## as the phase.
Because that is how we describe a wave traveling to the right. If you look at the equivalent formulation ##y=A \sin \large(\frac {2\pi} {\lambda} (x - vt)\large)##, you will clearly see why that is. As ##t## increases (which it always does) ##x## must also increase to keep the phase constant. In other words the constant phase travels at speed ##v##.

Look at the square dot in your drawing. Assume that at ##t=0## its coordinates are ##(x_0,y_0)##. At ##t=t_1## you want ##y(x_1,t_1) = y(x_0,0)## units. For ##y## to have the same value at the two different times and positions, the phase must be the same, $$\frac {2\pi} {\lambda} (x_1 - vt_1)=\frac {2\pi} {\lambda} (x_0 - 0) \implies x_1-x_0=vt_1$$This says that the square dot is at distance ##vt_1## away from where it started. In other words, the constant phase travels at speed ##v##.

You can consolidate your understanding and use similar reasoning to convince yourself that ##y=A \sin \large(\frac {2\pi} {\lambda} (x + vt)\large)## describes a wave traveling to the left.

On edit: Deleted extraneous ##=0## in the equation.
 
Last edited:
  • Informative
Likes   Reactions: Shreya
kuruman said:
Because that is how we describe a wave traveling to the right. If you look at the equivalent formulation ##y=A \sin \large(\frac {2\pi} {\lambda} (x - vt)\large)##, you will clearly see why that is. As ##t## increases (which it always does) ##x## must also increase to keep the phase constant. In other words the constant phase travels at speed ##v##.

Look at the square dot in your drawing. Assume that at ##t=0## its coordinates are ##(x_0,y_0)##. At ##t=t_1## you want ##y(x_1,t_1) = y(x_0,0)## units. For ##y## to have the same value at the two different times and positions, the phase must be the same, $$\frac {2\pi} {\lambda} (x_1 - vt_1)=\frac {2\pi} {\lambda} (x_0 - 0)=0 \implies x_1-x_0=vt_1$$This says that the square dot is at distance ##vt_1## away from where it started. In other words, the constant phase travels at speed ##v##.

You can consolidate your understanding and use similar reasoning to convince yourself that ##y=A \sin \large(\frac {2\pi} {\lambda} (x + vt)\large)## describes a wave traveling to the left.
Thanks a million @kuruman, I had this question in the back of my mind for months. Now I can see why the phase is so, and I can also understand what it means for phase to be constant . 🙏

Ps: Sorry for the late reply. I'm from a different time zone.
 
  • Like
Likes   Reactions: kuruman

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 309 ·
11
Replies
309
Views
16K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 41 ·
2
Replies
41
Views
5K
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
12K