Phase of a wave - My interpretation

AI Thread Summary
The discussion focuses on the interpretation of wave phase, specifically how to understand the equation for a traveling wave. It explains that the phase, represented by the argument of the sine function, indicates the position of a point in the wave at a given time. The relationship between distance and time is illustrated, showing that a constant phase moves at the wave's speed. The conversation clarifies why the equation includes terms like ##kx - \omega t## and how they relate to the wave's propagation. Overall, the thread enhances understanding of wave behavior and the significance of phase in wave mechanics.
Shreya
Messages
187
Reaction score
64
Homework Statement
I have always wondered what the phase of a wave means. I came up with something and I would really appreciate if someone could help me verify it and possibly find out flaws in it.
Relevant Equations
My textbook says: $$y = A \sin (kx - \omega t)$$ $$ y = A \sin k (x - vt)$$ $$y=A \sin (\frac {2\pi} {\lambda} (x - vt)$$ as ##\frac w k = v##
Let's begin my interpretation: (please refer the image below). There I have considered a point in the disturbance/wave (let's call it ##P##),(not a particle of the medium) and I follow it as the wave progresses. The solid curve is a Pic of the wave at ##t=0## and the dotted one is its Pic at some later time. The point in the disturbance has moved by ##vt##. So, the ##x - vt## in the equation can be interpreted as the intital distance of point P. On Dividing that by ##\lambda##, we get 'what part of the cycle was the point at initially' or the initial state. And on multiplying it by ##2\pi##, we are coverting that to 'what part of a complete revolution'. Finally taking the ##\sin## of it and multiplying with ##A## we get the ##y## value.

I would love to see comments on this & Understand any mistakes I've made. Thanks in Advance.
(Edit: Sorry for the blurry image, I have updated it)

20221015_200536.jpg
 
Last edited:
Physics news on Phys.org
The definition of phase is the argument of the harmonic function, i.e. what's between the parentheses. It the angle the sine (or cosine) of which you are to consider. In a traveling wave a constant phase travels at the speed of propagation of the wave.
 
kuruman said:
The definition of phase is the argument of the harmonic function, i.e. what's between the parentheses. It the angle the sine (or cosine) of which you are to consider
Yes, I understand that. But, my attempt above was to justify why it is what it is or, rather, why we put ##kx-\omega t## as the phase.
 
Last edited:
Shreya said:
Yes, I understand that. But, my attempt above was to justify why it is what it is or, rather, why we put ##kx-\omega t## as the phase.
Because that is how we describe a wave traveling to the right. If you look at the equivalent formulation ##y=A \sin \large(\frac {2\pi} {\lambda} (x - vt)\large)##, you will clearly see why that is. As ##t## increases (which it always does) ##x## must also increase to keep the phase constant. In other words the constant phase travels at speed ##v##.

Look at the square dot in your drawing. Assume that at ##t=0## its coordinates are ##(x_0,y_0)##. At ##t=t_1## you want ##y(x_1,t_1) = y(x_0,0)## units. For ##y## to have the same value at the two different times and positions, the phase must be the same, $$\frac {2\pi} {\lambda} (x_1 - vt_1)=\frac {2\pi} {\lambda} (x_0 - 0) \implies x_1-x_0=vt_1$$This says that the square dot is at distance ##vt_1## away from where it started. In other words, the constant phase travels at speed ##v##.

You can consolidate your understanding and use similar reasoning to convince yourself that ##y=A \sin \large(\frac {2\pi} {\lambda} (x + vt)\large)## describes a wave traveling to the left.

On edit: Deleted extraneous ##=0## in the equation.
 
Last edited:
kuruman said:
Because that is how we describe a wave traveling to the right. If you look at the equivalent formulation ##y=A \sin \large(\frac {2\pi} {\lambda} (x - vt)\large)##, you will clearly see why that is. As ##t## increases (which it always does) ##x## must also increase to keep the phase constant. In other words the constant phase travels at speed ##v##.

Look at the square dot in your drawing. Assume that at ##t=0## its coordinates are ##(x_0,y_0)##. At ##t=t_1## you want ##y(x_1,t_1) = y(x_0,0)## units. For ##y## to have the same value at the two different times and positions, the phase must be the same, $$\frac {2\pi} {\lambda} (x_1 - vt_1)=\frac {2\pi} {\lambda} (x_0 - 0)=0 \implies x_1-x_0=vt_1$$This says that the square dot is at distance ##vt_1## away from where it started. In other words, the constant phase travels at speed ##v##.

You can consolidate your understanding and use similar reasoning to convince yourself that ##y=A \sin \large(\frac {2\pi} {\lambda} (x + vt)\large)## describes a wave traveling to the left.
Thanks a million @kuruman, I had this question in the back of my mind for months. Now I can see why the phase is so, and I can also understand what it means for phase to be constant . 🙏

Ps: Sorry for the late reply. I'm from a different time zone.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top