• Support PF! Buy your school textbooks, materials and every day products Here!

Phasor circuit problem: 1 resistor, 1 capacitor, 1 inductor, 1 Voltage source

  • Thread starter VinnyCee
  • Start date
  • #1
489
0

Homework Statement



What value of [itex]\omega[/itex] will cause the forced response [itex]v_0[/itex] in the circuit below to be zero?

http://img248.imageshack.us/img248/1854/problem934ao5.jpg [Broken]



Homework Equations



Phasor eqs.



The Attempt at a Solution



[tex]i\,=\,\frac{50\,-\,V_1}{2\Omega}\,=\,\frac{V_1\,-\,V_2}{5\,j\,\Omega}\,=\,\frac{V_2}{20\,j\,\Omega}[/tex]

If I substitute [itex]V_1\,=\,0[/itex], then I get:

[tex]25\,=\,-\frac{V_2}{5\,j\,\Omega}\,=\,\frac{V_2}{20\,j\,\Omega}[/tex]

How do I use this to find [itex]\omega[/itex]?
 
Last edited by a moderator:

Answers and Replies

  • #2
SGT
If you want Vo to be zero, the impedance of the series connection of the capacitor with the inductor must be zero.
You got the impedance of the capacitor wrong.
[tex]Z_C = \frac{-j}{\omega C}[/tex]
[tex]Z_L = j \omega L[/tex]
 
  • #3
489
0
http://img99.imageshack.us/img99/4333/problem934part2xc6.jpg [Broken]

[tex]Z\,=\,\frac{1}{5j\omega}\,+\,20j\omega[/tex]

[tex]V_{OUT}\,=\,\frac{Z}{Z\,+\,2\Omega}[/tex]

We want [itex]V_{OUT}[/itex] to be zero:

[tex]0\,=\,\frac{\frac{1}{5j\omega}\,+\,20j\omega}{\frac{1}{5j\omega}\,+\,20j\omega\,+\,2\Omega}\,V_{IN}[/tex]

[tex]0\,=\,\frac{1}{5j\omega}\,+\,20j\omega}[/tex]

[tex]-\frac{1}{5j\omega}\,=\,20j\omega[/tex]

[tex]\omega\,=\,\frac{1}{10}[/tex]

Is that right?
 
Last edited by a moderator:
  • #4
SGT
http://img99.imageshack.us/img99/4333/problem934part2xc6.jpg [Broken]

[tex]Z\,=\,\frac{1}{5j\omega}\,+\,20j\omega[/tex]

[tex]V_{OUT}\,=\,\frac{Z}{Z\,+\,2\Omega}[/tex]

We want [itex]V_{OUT}[/itex] to be zero:

[tex]0\,=\,\frac{\frac{1}{5j\omega}\,+\,20j\omega}{\frac{1}{5j\omega}\,+\,12j\omega\,+\,2\Omega}\,V_{IN}[/tex]

[tex]0\,=\,\frac{1}{5j\omega}\,+\,20j\omega}[/tex]

[tex]-\frac{1}{5j\omega}\,=\,20j\omega[/tex]

[tex]\omega\,=\,\frac{1}{10}[/tex]

Is that right?
Yes, the impedance is zero at the resonant frequency [tex]\omega_0 = \frac{1}{(LC)^\frac{1}{2}} = \frac{1}{10}[/tex]
 
Last edited by a moderator:

Related Threads on Phasor circuit problem: 1 resistor, 1 capacitor, 1 inductor, 1 Voltage source

Replies
5
Views
1K
  • Last Post
Replies
14
Views
19K
Replies
11
Views
4K
Replies
2
Views
2K
Replies
9
Views
689
Replies
9
Views
3K
Replies
2
Views
16K
Replies
12
Views
4K
Replies
9
Views
541
Top