1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Photon momentum conservation

  1. Aug 15, 2010 #1
    I have been trying to research this and my understanding seems to be flawed.
    From what I have gathered from light sails and other sources:

    1) The frequency of reflected light is the same as the incident light.
    2 ) The photon imparts a kick to the reflected surface, Transfers momentum.

    This seems to paint a picture of a photon reflecting between two surfaces without losing momentum/frequency while imparting momentum at every reflection. Clearly I am missing something here.
     
  2. jcsd
  3. Aug 15, 2010 #2

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    What happens when a ball bounces elastically off a wall?
     
  4. Aug 15, 2010 #3
    Who says?

    It's highly likely that there is very little change in frequency - given that the sail is much more massive than the photon, but if any momentum (and energy) is transferred, there will be a change in the photon frequency.

    In the limit of an infinitely heavy sail, the photo will rebound with no momentum loss and the sail won't move.
     
  5. Aug 15, 2010 #4

    jtbell

    User Avatar

    Staff: Mentor

    Going the other way, if the photon scatters off a very light object, say a single free electron, the loss in photon energy (and the corresponding change in wavelength) is easy to detect. We call it Compton scattering or the Compton effect.
     
  6. Aug 15, 2010 #5
    If you take energy conservation into account, the photon frequency would have to decrease with each reflection.
     
  7. Aug 15, 2010 #6
    If the sail is moving, the frequency of the reflected photon is different from the frequency of the incident photon due to the Doppler effect.
     
  8. Aug 15, 2010 #7
    Fine ,,this is completely consistent with my original understanding of the conservation of momentum.

    As to "who says" the frequency does not change my memory of sources is terrible but this is not an idea I came up with myself but read various places and questioned at the time, hence this thread.
    SO thanks all, for the clarification.
     
  9. Aug 18, 2010 #8
    Having thought about your responce some more I find the first part in agreement with my original understanding but don't understand why if the mass of the sail is approaching infinite there would be no change in momentum of the photon???
    The finite temporal duration of the interchange is very small , so what difference would it make to the photon if its transfered momentum had any actuall effect on the motion of the sail or not???
    Thanks
     
  10. Aug 18, 2010 #9

    phyzguy

    User Avatar
    Science Advisor

    You're missing the point that, while the magnitude of the momentum is unchanged (in the limit of infinite sail mass), the sign of the momentum changes. The photon comes in with momentum p, and leaves with momentum -p, and so transfers momentum 2p to the sail.
     
  11. Aug 18, 2010 #10
    This is only true in the reference frame in which the sail is immobile, though.
     
  12. Aug 18, 2010 #11
    Ah, infinities - you don't want to mess with infinities - they always bite you.

    If the sail has infinite mass, it has infinite inertia so it cannot be moved by any non-infinite force. therefore, it's velocity after the collision is zero and the momentum transferred to it is zero.

    A completely pointless, meaningless argument of course.

    However, your analysis suggest to me that if we were to take two (heavy) mirrors, fixed face to face, we could set a photon bouncing between them. At each bounce, the photon would transfer 2p momentum to the mirrors, which we could then use to power a star drive perhaps?

    Errr... to anyone with little sense of humour out there - that's a joke.
     
  13. Aug 18, 2010 #12
    What if the velocity of the sail before the collision was non-zero?
     
  14. Aug 18, 2010 #13
    You yankin' my chain?
     
  15. Aug 18, 2010 #14
    Why would you think that? All inertial observers are equally right in explaining the same physical situation.
     
  16. Aug 18, 2010 #15
    You lost me here. Wrt a photon p is simply frequency so a minus sign is simply a vector directional indicator as a negative frequency/energy makes no sense that I can understand.
    As far as the 2p transfered to the sail what is the meaning of this??? Are you saying that there would be twice the initial momentum of the photon propagating through the structure of the sail???
    If this is the case then perhaps my understanding of conservation is lacking.
     
  17. Aug 18, 2010 #16
    What is the change of velocity of a sail if the momentum imparted on it is 2p and its mass is infinite?
     
  18. Aug 18, 2010 #17
    Are you saying if a photon, or even a massive particle, collides with a mass too great to achieve any net motion from the collision that there would , therefore, be no propagated acceleration i.e. momentum transfer whatsoever??
    Wouldn't any collision result in molecular displacement and pressure waves etc??
    WHich part was the joke??? The apparent violation of conservation of momentum, implicit in the two mirror picture was my motivation for this post.
     
  19. Aug 18, 2010 #18
    There is no joke. But, mind you, you need to trap the photon between the mirrors from the outside, because if you generated it yourself, it would impart the oposite momentum to the system.

    If the photon comes from the outside, however, then when it hits the left mirror it would bounce back, imparting an "infinitesimal" velocity to the system. Then, when it reaches the left mirror it would impart the opposite momentum making the system to stop. In this way, the system would move to the right with a periodic changes of "infinitesimal" velocity and rest.
     
  20. Aug 18, 2010 #19
    What is the momentum of object with infinite mass and zero speed ? It's:

    [itex]p=0\cdot \infty[/itex]

    We can't even define momentum of such an object. So talking about conservation of momentum in this case is meaningless.
     
    Last edited: Aug 18, 2010
  21. Aug 18, 2010 #20
    But in case where the speed of infinite mass object is non zero (but finite), its momentum is infinite. So the conservation of momentum in this case is valid.
    (i'm talking about a collision of object with infinite momentum with object with finite momentum).
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Photon momentum conservation
  1. Photon momentum (Replies: 5)

  2. Photon momentum (Replies: 9)

  3. Photon momentum (Replies: 3)

  4. Momentum of a photon (Replies: 3)

  5. Photon momentum (Replies: 1)

Loading...