MHB Please check this convergence test (#2)

ognik
Messages
626
Reaction score
2
$ \sum_{n}\frac{1}{n.{n}^{\frac{1}{n}}} $

Now $\frac{1}{n}$ diverges and $\ne 0$ , so by limit comparison test:

$ \lim_{{n}\to{\infty}} \frac{n.{n}^{\frac{1}{n}}}{n} = \lim_{{n}\to{\infty}} {n}^{\frac{1}{n}} = \lim_{{n}\to{\infty}} {n}^0 = 1$ (I think the 2nd last step may be dubious?)

Therefore both series diverge

(also let me know if there is another approach, thanks)
 
Physics news on Phys.org
Hey (again) ognik,

It is true that $\lim_{n\rightarrow\infty}n^{\frac{1}{n}}=1$, but not for the reason you've stated (i.e. $n^0=1$). The limit $\lim_{n}n^{\frac{1}{n}}$ is an "indeterminate form" from calculus. The trick is to write $y=n^{\frac{1}{n}}$, take a logarithm on both sides, then evaluate the limit using L'Hopital's rule to get $\lim_{n}\ln(y)=0\Longrightarrow\lim_{n}y=1.$
 
Thanks, slowly re-learning all these tricks of the trade...

$ \lim_{{ n}\to{\infty }}ln (y) = \lim \frac{ln (n)}{n} = \lim \frac{1}{n} = 0; \therefore \lim y = e^{0} = 1$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K