Please help; calculation phase space -> how do I use the Delta functions?

In summary, The formula for calculating the phase space for spin1 particles involves a delta function and the integral over the delta function is equal to 1 for pd<pa+pb-pc and 0 for pd>pa+pb-pc. In the CM frame, the integral simplifies to \delta(E1+E2-E3-E4), which is used to calculate the 2particle phase space psi for the interaction A+B -> C+D. This is also known as the QED formula.
  • #1
marlon1
5
0
Can somebody help me out? I'm reading about formulas for cross sections for spin1 particles but I don't understand the delta functions, in calculating the 2particle pahse space psi

For example the interaction; A+B -> C+D has the formula;

psi= (2pi)^2 delta(Pa+Pb-Pc-Pd) d3Pc d3Pd / 4EcEd

then all the books say the same;

delta(Pa+Pb-Pc-Pd) d3Pd = delta (Ea+Eb-Ec-Ed)
:confused:

can somebody explain this to me?

the left side delta is zero everywhere pa+pb =not pc+pd.

the integral over the delta function d3Pd is;
1 for pd<pa+pb-pc and
0 for pd>pa+pb-pc

? how do I use this?
 
Last edited:
Physics news on Phys.org
  • #2
Vergeet niet dat de je p3's en p4's hebt! (p4=(E,p)

[tex]\delta^{4}(p1+p2-p3-p4) d^{3}[/tex]p4
=[tex]\delta(E1+E2-E3-E4)
\delta^{3}[/tex](p1+p2-p3-p4)[tex]d^{3}[/tex]p4
=[tex] \delta(E1+E2-E3-E4) \delta^{3}[/tex](-p3-p4) [tex]d^{3} [/tex]p4 (CM frame: p1=-p2)
=[tex]\delta(E1+E2-E3-E4) \delta[/tex](x) [tex]d[/tex]x (x= -p3-p4 = 0 CM frame)
= [tex] \delta(E1+E2-E3-E4) [/tex] * [tex]1[/tex] = [tex]\delta(E1+E2-E3-E4) [/tex]
QED
 
Back
Top