MHB Please prove the following inequality

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The inequality \( \sqrt{a+b+c+d} \geq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}{2} \) is proven using both the AM-GM and Cauchy-Schwarz inequalities. By applying AM-GM, it is shown that each pair of terms satisfies \( a+b \geq 2\sqrt{ab} \), leading to a cumulative result that supports the inequality. The Cauchy-Schwarz inequality further reinforces this by establishing that \( 4(a+b+c+d) \geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2 \). Both methods converge to demonstrate the validity of the original inequality. This proof is noted for its elegance and simplicity.
Albert1
Messages
1,221
Reaction score
0
a,b,c,d > 0 , please prove :

$ \sqrt{a+b+c+d} \geq \dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}{2}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Now

$\displaystyle \left(\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2} \right)^2 = \frac{a+b+c+d+2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd}}{4}$

use the AM-GM inequality which says $\displaystyle \frac{a+b}{2} \geq \sqrt{ab}$ or $a + b\geq 2 \sqrt{ab}$

so we get

$a+b \geq 2 \sqrt{ab}$ , $a + c \geq 2 \sqrt{ac}$ , etc... for all the square root terms, we get

$4a+4b+4c+4d \geq 2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd} + a + b + c + d$

and dividing left and right by 4

$\displaystyle a+b+c+d \geq \frac{a+b+c+d+2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd}}{4}$ and since the square root of the right hand side is $\displaystyle \left(\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2} \right)$

we get

$\displaystyle \sqrt{a+b+c+d} \geq \frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2}$
 
Last edited by a moderator:
By Cauchy-Schwarz inequality:

$({1}^{2}+{1}^{2}+{1}^{2}+{1}^{2})({\sqrt{a}}^{2}+{\sqrt{b}}^{2}+{\sqrt{c}}^{2}+{\sqrt{b}}^{2})

\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2$$4(a+b+c+d)\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2 $

$ \therefore \sqrt{a+b+c+d}\geq \dfrac{(\sqrt{a}+\sqrt{b}++\sqrt{c}++\sqrt{d})}{2}$
 
Albert said:
By Cauchy-Schwarz inequality:

$({1}^{2}+{1}^{2}+{1}^{2}+{1}^{2})({\sqrt{a}}^{2}+{\sqrt{b}}^{2}+{\sqrt{c}}^{2}+{\sqrt{b}}^{2})

\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2$$4(a+b+c+d)\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2 $

$ \therefore \sqrt{a+b+c+d}\geq \dfrac{(\sqrt{a}+\sqrt{b}++\sqrt{c}++\sqrt{d})}{2}$
this is a very elagant and simple proof.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K