Please prove the following inequality

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $\sqrt{a+b+c+d} \geq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}{2}$ is proven using the AM-GM inequality and the Cauchy-Schwarz inequality. The proof demonstrates that for positive values of a, b, c, and d, the left-hand side is greater than or equal to the right-hand side by establishing a series of inequalities that lead to the conclusion. The final result confirms the validity of the original inequality through rigorous mathematical reasoning.

PREREQUISITES
  • Understanding of the AM-GM inequality
  • Familiarity with the Cauchy-Schwarz inequality
  • Basic algebraic manipulation skills
  • Knowledge of square roots and their properties
NEXT STEPS
  • Study the applications of the AM-GM inequality in various mathematical proofs
  • Explore advanced topics in inequality theory
  • Learn about other inequalities such as Jensen's inequality
  • Practice proving inequalities using different mathematical techniques
USEFUL FOR

Mathematicians, students studying inequality proofs, and anyone interested in advanced algebraic concepts will benefit from this discussion.

Albert1
Messages
1,221
Reaction score
0
a,b,c,d > 0 , please prove :

$ \sqrt{a+b+c+d} \geq \dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}{2}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Now

$\displaystyle \left(\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2} \right)^2 = \frac{a+b+c+d+2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd}}{4}$

use the AM-GM inequality which says $\displaystyle \frac{a+b}{2} \geq \sqrt{ab}$ or $a + b\geq 2 \sqrt{ab}$

so we get

$a+b \geq 2 \sqrt{ab}$ , $a + c \geq 2 \sqrt{ac}$ , etc... for all the square root terms, we get

$4a+4b+4c+4d \geq 2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd} + a + b + c + d$

and dividing left and right by 4

$\displaystyle a+b+c+d \geq \frac{a+b+c+d+2\sqrt{ab}+2\sqrt{ac} + 2\sqrt{ad} + 2\sqrt{bc} + 2\sqrt{cd} + 2\sqrt{bd}}{4}$ and since the square root of the right hand side is $\displaystyle \left(\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2} \right)$

we get

$\displaystyle \sqrt{a+b+c+d} \geq \frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{2}$
 
Last edited by a moderator:
By Cauchy-Schwarz inequality:

$({1}^{2}+{1}^{2}+{1}^{2}+{1}^{2})({\sqrt{a}}^{2}+{\sqrt{b}}^{2}+{\sqrt{c}}^{2}+{\sqrt{b}}^{2})

\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2$$4(a+b+c+d)\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2 $

$ \therefore \sqrt{a+b+c+d}\geq \dfrac{(\sqrt{a}+\sqrt{b}++\sqrt{c}++\sqrt{d})}{2}$
 
Albert said:
By Cauchy-Schwarz inequality:

$({1}^{2}+{1}^{2}+{1}^{2}+{1}^{2})({\sqrt{a}}^{2}+{\sqrt{b}}^{2}+{\sqrt{c}}^{2}+{\sqrt{b}}^{2})

\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2$$4(a+b+c+d)\geq (\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d})^2 $

$ \therefore \sqrt{a+b+c+d}\geq \dfrac{(\sqrt{a}+\sqrt{b}++\sqrt{c}++\sqrt{d})}{2}$
this is a very elagant and simple proof.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K