Plot parametricplot3d like this example

  • Context: Mathematica 
  • Thread starter Thread starter member 428835
  • Start date Start date
  • Tags Tags
    Example Plot
Click For Summary
SUMMARY

The discussion focuses on generating a 3D parametric plot of a vibrating membrane using Mathematica. The provided function, fXYZ, utilizes Bessel functions and hyperbolic functions to model the membrane's behavior. The examples illustrate how to visualize the membrane's vibrations from a top view, demonstrating the capabilities of Mathematica for complex mathematical visualizations.

PREREQUISITES
  • Familiarity with Mathematica version 12.3 or later
  • Understanding of parametric plotting techniques
  • Knowledge of Bessel functions and their applications
  • Basic understanding of hyperbolic functions
NEXT STEPS
  • Explore advanced features of Mathematica for 3D plotting
  • Learn about the implementation of Bessel functions in Mathematica
  • Research techniques for visualizing complex mathematical models
  • Investigate the use of hyperbolic functions in physical simulations
USEFUL FOR

Mathematicians, physicists, and engineers interested in visualizing complex mathematical models, particularly those working with wave phenomena and vibrations.

member 428835
Hi PF!

Here looking at the first answer are two awesome examples of a vibrating membrane plotted from a top view. I can create the first example via
Code:
fXYZ =
{Cos[\[Theta]] Csc[\[Pi]/180] Sin[s Sin[\[Pi]/180]] -
  0.001 Cos[\[Theta]] Cos[2 \[Theta]] Sin[
    s Sin[\[Pi]/
      180]] (10.7721 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           1.52712 (BesselJ[1,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           3.05424 BesselJ[2,
             175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0939376 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           3.35307 (BesselJ[1,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           6.70613 BesselJ[2,
             384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     0.000899129 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           4.98473 (BesselJ[1,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           9.96947 BesselJ[2,
             571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0000163397 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           6.58519 (BesselJ[1,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           13.1704 BesselJ[2,
             754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     3.74518*10^-7 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           8.17376 (BesselJ[1,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
           
              BesselJ[3,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           16.3475 BesselJ[2,
             936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     9.80625*10^-9 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           9.75646 (BesselJ[1,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           19.5129 BesselJ[2,
             1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     2.94642*10^-10 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           11.3358 (BesselJ[1,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           22.6716 BesselJ[2,
             1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]))),
 Csc[\[Pi]/180] Sin[\[Theta]] Sin[s Sin[\[Pi]/180]] -
  0.001 Cos[2 \[Theta]] Sin[\[Theta]] Sin[
    s Sin[\[Pi]/
      180]] (10.7721 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           1.52712 (BesselJ[1,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           3.05424 BesselJ[2,
             175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0939376 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           3.35307 (BesselJ[1,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           6.70613 BesselJ[2,
             384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     0.000899129 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           4.98473 (BesselJ[1,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           9.96947 BesselJ[2,
             571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0000163397 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           6.58519 (BesselJ[1,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           13.1704 BesselJ[2,
             754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
          
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     3.74518*10^-7 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           8.17376 (BesselJ[1,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           16.3475 BesselJ[2,
             936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     9.80625*10^-9 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           9.75646 (BesselJ[1,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           19.5129 BesselJ[2,
             1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     2.94642*10^-10 (0. -
        Sqrt[
         1 - Cos[s Sin[\[Pi]/180]]^2] (0. +
           11.3358 (BesselJ[1,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           22.6716 BesselJ[2,
             1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]))), (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
    180] + 0.001 Cos[2 \[Theta]] Cos[
    s Sin[\[Pi]/
      180]] (10.7721 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           1.52712 (BesselJ[1,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           3.05424 BesselJ[2,
             175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0939376 (0. -
        Sqrt[1 -
       
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           3.35307 (BesselJ[1,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           6.70613 BesselJ[2,
             384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     0.000899129 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           4.98473 (BesselJ[1,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           9.96947 BesselJ[2,
             571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     0.0000163397 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           6.58519 (BesselJ[1,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
           
              BesselJ[3,
               754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           13.1704 BesselJ[2,
             754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     3.74518*10^-7 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           8.17376 (BesselJ[1,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           16.3475 BesselJ[2,
             936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) +
     9.80625*10^-9 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           9.75646 (BesselJ[1,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           19.5129 BesselJ[2,
             1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])) -
     2.94642*10^-10 (0. -
        Sqrt[1 -
          Cos[s Sin[\[Pi]/180]]^2] (0. +
           11.3358 (BesselJ[1,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
              BesselJ[3,
               1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])]) +
        Cos[s Sin[\[Pi]/180]] (0. +
           22.6716 BesselJ[2,
             1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
             22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
                  180])])))};

ParametricPlot3D[
 Evaluate[fXYZ], {s,
   0,1/180 \[Pi] Csc[\[Pi]/180]}, {\[Theta], 0, 2 \[Pi]}, Boxed -> False,
 ViewPoint -> {0, 0, Infinity}, Axes -> False,
 ColorFunction ->
  Function[{x, y, z}, Glow[ColorData["GrayTones", z]]], Mesh -> None,
 Lighting -> None]
However, I can't figure out how to create that brown plot they do (their second plot). Any suggestions (obviously my plot is a parametric 3D plot, so the form is different, hence what's killing me).
 
Physics news on Phys.org
joshmccraney said:
Hi PF!

Here looking at the first answer are two awesome examples of a vibrating membrane plotted from a top view.
Does anyone have any idea where the
Code:
2 ArcTan[10 x]/Pi + .5
comes from at the link? I'm clueless, but the magic seems to be here.
 
For future regard, this ended up working out very nicely (figured out how to vary the color proportional to height):
Code:
ParametricPlot3D[
 Evaluate[fXYZ], {s, 0, 1/180 \[Pi] Csc[\[Pi]/180]}, {\[Theta], 0,
  2 \[Pi]}, PlotRange -> All,
 ColorFunction ->
  Function[{x, y, z}, Blend[{Black, White, White}, Abs[ 10 z]]],
 ColorFunctionScaling -> False, ViewPoint -> {0, 0, Infinity},
 Axes -> False, Mesh -> None, PlotPoints -> 300, MaxRecursion -> 0]
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K