Point charges and multipole expansion

Click For Summary
SUMMARY

The discussion centers on the multipole expansion of a charge distribution consisting of a positive charge Q at the origin and negative charges -Q located at distances d along the x, y, and z axes. The potential is expanded using spherical harmonics, leading to a monopole term of \(\phi^{(1)} = -\frac{2Q}{4\pi \varepsilon_0 r}\) and a dipole term that initially appears complex. The user identifies algebraic mistakes related to the spherical harmonics and their definitions, particularly concerning the signs and factors in the dipole term \(\phi^{(2)}\). The final expression for the dipole term is clarified, emphasizing the importance of consistent definitions and careful algebraic manipulation.

PREREQUISITES
  • Understanding of electrostatics and point charges
  • Familiarity with spherical coordinates and spherical harmonics
  • Knowledge of multipole expansion techniques
  • Proficiency in algebraic manipulation of complex numbers
NEXT STEPS
  • Study the derivation of spherical harmonics and their properties
  • Learn about the application of multipole expansion in electrostatics
  • Explore the significance of charge density in calculating dipole moments
  • Review common pitfalls in algebraic manipulations involving complex numbers
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism, particularly those focusing on electrostatics and multipole expansions.

ShayanJ
Science Advisor
Insights Author
Messages
2,802
Reaction score
605
Consider the following charge distribution:A positive charge of magnitude Q is at the origin and there is a charge -Q on each of the x,y and z axes a distance d from the origin.
I want to expand the potential of this charge distribution using spherical coordinates.Here's how I did it:
<br /> \phi=\frac {Q} {4\pi \varepsilon_0} \left[ \frac{1}{r} - \frac{1}{\sqrt{r^2+d^2-2rd \cos\theta}}- \frac{1}{\sqrt{r^2+d^2-2rd \cos\gamma_1}}- \frac{1}{\sqrt{r^2+d^2-2rd \cos\gamma_2}}\right]=\\<br /> \frac {Q} {4\pi \varepsilon_0 r} \left[ 1 - \frac{1}{\sqrt{1+(\frac d r)^2-2 \frac d r \cos\theta}}- \frac{1}{\sqrt{1+(\frac d r)^2-2\frac d r \cos\gamma_1}}- \frac{1}{\sqrt{1+(\frac d r)^2-2\frac d r \cos\gamma_2}}\right]=\\<br /> \frac {Q} {4\pi \varepsilon_0 r} \left[ <br /> 1-\sum_{n=0}^\infty P_n(\cos\theta) (\frac d r)^n-\sum_{n=0}^\infty P_n(\cos\gamma_1) (\frac d r)^n-\sum_{n=0}^\infty P_n(\cos\gamma_2) (\frac d r)^n<br /> \right]=\\<br /> \frac {Q} {4\pi \varepsilon_0 r} \left[ <br /> 1-\sum_{n=0}^\infty P_n(\cos\theta) (\frac d r)^n-\sum_{n=0}^\infty \frac{4\pi}{2n+1} (\frac d r)^n\sum_{m=-n}^n Y^{m*}_n(\frac \pi 2,0) Y^m_n(\theta,\varphi)-\sum_{n=0}^\infty \frac{4\pi}{2n+1} (\frac d r)^n\sum_{m=-n}^n Y^{m*}_n(\frac \pi 2,\frac \pi 2) Y^m_n(\theta,\varphi)\right]<br />
The monopole term(n=0) is \phi^{(1)}=-\frac{2Q}{4\pi \varepsilon_0 r },as it should be.
My problem is, the dipole term(n=1) turns out to be complex.What's wrong?
Thanks
 
Physics news on Phys.org
P_n is clearly real. You are making some algebraic mistake with the e^{i\phi}.
Be careful about factors like (-1)^m which differ in different textbooks.
 
The dipole term is:
<br /> \phi^{(2)}=\frac{Qd}{4\pi\varepsilon_0r^2} \left\{P_1(\cos\theta)- \frac{4\pi}{ 3 } \left[\left(Y^{-1*}_1(\frac \pi 2,0)+Y^{-1*}_1(\frac \pi 2,\frac \pi 2)\right) Y^{-1}_1(\theta,\varphi)\\+\left(Y^{0*}_1(\frac \pi 2,0)+Y^{0*}_1(\frac \pi 2,\frac \pi 2)\right)Y^0_1(\theta,\varphi)\\+\left(Y^{1*}_1(\frac \pi 2,0) +Y^{1*}_1(\frac \pi 2,\frac \pi 2)\right)Y^1_1(\theta,\varphi)\right]\right\}<br />
The definition I use for spherical harmonics is:
<br /> Y^m_n(\theta,\varphi)=\sqrt{ \frac{2n+1}{4\pi} \frac{ (n-m)! }{ (n+m)! } } P^m_n(\cos\theta) e^{im\varphi}<br />
So we have:
<br /> Y^{-1}_1=\frac 1 2 \sqrt{\frac{3}{2\pi}}\sin\theta e^{-i\varphi}\\<br /> Y^0_1=\frac 1 2 \sqrt{\frac 3 {2\pi}}\cos\theta\\<br /> Y^1_1=-\frac 1 2 \sqrt{\frac{3}{2\pi}}\sin\theta e^{i\varphi}\\<br />
And:
<br /> Y^{-1*}_1(\frac \pi 2,0)=\frac 1 2 \sqrt{\frac3 {2\pi}}\\<br /> Y^{-1*}_1(\frac \pi 2,\frac \pi 2)=\frac 1 2 \sqrt{\frac3 {2\pi}}e^{i \frac \pi 2}=\pm i \frac 1 2 \sqrt{\frac3 {2\pi}}\\<br /> Y^{0*}_1(\frac \pi 2,\varphi)=0\\<br /> Y^{1*}_1(\frac \pi 2,0)=-\frac 1 2 \sqrt{\frac 3 {2\pi}}\\<br /> Y^{1*}_1(\frac \pi 2,\frac \pi 2)=-\frac 1 2 \sqrt{\frac 3 {2\pi}}e^{-i \frac \pi 2}=\pm i \frac 1 2 \sqrt{\frac 3 {2\pi}}<br />
So we'll have:
<br /> \phi^{(2)}=\frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\left( 1\pm i \right)\sin\theta e^{-i\varphi}+\left( -1\pm i \right)\sin\theta e^{i\varphi} \right\}=\\ \frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\sin\theta e^{-i\varphi}\mp i \sin\theta e^{-i\varphi} -\sin\theta e^{i\varphi}\pm i \sin\theta e^{i\varphi} \right\}=\\ \frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\sin\theta (e^{i\varphi}+e^{-i\varphi}) \pm i \sin\theta ( e^{i\varphi}-e^{-i\varphi} ) \right\}=\\ \frac{Qd}{2\pi \varepsilon_0 r^2} \left\{ \frac 1 2 \cos\theta-\sin\theta \left[ \cos\varphi \mp \sin\varphi\right] \right\}<br />
What's wrong?

EDIT:
I found what was wrong.
Ok,another question.How can I decide which sign is the right one for the \sin\varphi?
Thanks
 
Last edited:
e^{i\pi/2}=+i.
 
Ok,So we have:
<br /> \phi^{(2)}=\frac{Qd}{2\pi \varepsilon_0 r^2} \left[ \frac 1 2 \cos\theta - \sin\theta \left( \cos\varphi-\sin\varphi\right) \right]<br />
But we can also use the formulas \vec{p}=\int \vec{r} \rho dV and \phi^{(2)}=\frac{\vec{p}\cdot\vec{r}} {4\pi \varepsilon_0 r^3} and we should arrive at the same result.But when I use the charge density \rho=Q \left[ \delta(x)\delta(y)\delta(z)-\delta(x-d)\delta(y)\delta(z)-\delta(x)\delta(y-d)\delta(z)-\delta(x)\delta(y)\delta(z-d) \right], I'll get \vec{p}=-Qd(\hat{x}+\hat{y}+\hat{z}) and \phi^{(2)}=-\frac{Qd(x+y+z)}{4\pi \varepsilon_0 r^3}=-\frac{Qd}{4\pi \varepsilon_0 r^2}\left[ \cos\theta+\sin\theta \left(\cos\varphi+\sin\varphi\right)\right] which differs from the result obtained above.I can't see why this happens!
 
The signs and algebra for Y^m_L and P^m_L are tricky. I use (-1)^m in the definition of Y^m_L.
How do you define P^{-m}_L? Your Y^0_1 n your first post seems wrong.
Check everything. Get all your signs from the same place.
 
Your Y^0_1 is wrong and you lost a factor of 1/2 elsewhere. There must also be a mistake in sign that I don't readily see.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
848
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
903
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
726
  • · Replies 3 ·
Replies
3
Views
555
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
605
  • · Replies 10 ·
Replies
10
Views
2K