My first attempt revolved mostly around the solution method shown in this "site" or PowerPoint: http://physics.gmu.edu/~joe/PHYS685/Topic4.pdf .
However, after studying the content and writing down my answer for the monopole moment as equal to ##\sqrt{\frac{1}{4 \pi}} \rho##, I found out the...
Homework Statement
Consider a very thin rod lying on the z axis from z = −L/2 to z = L/2. It carries a uniform charge density λ. Show that away from the rod, at the point r (r >>L), the potential can be written as V (r, θ) = (2Lλ/4πε0)(1/L)[ 1 + 1/3(L/2r)2P2(cos θ) + 1/3(L/2r)4 P4(cos θ) + · ·...
Homework Statement
Text description: Let V(z) be the potential of a ring of charge on the axis of symmetry at
distance z from the center. Obtain the first two non-vanishing terms of the multipole expansion
for V(z) with z>>a where a is the radius of the ring. Can you see by symmetry that the...
Hi everyone! I'm currently working on this problem for which I am getting inconsistencies depending on how I do it. I'm trying to find the potential due to the quadrupole moment of the following distribution:
+q at (0,0,d), -2q at (0,0,0), and +q at (0,0,-2d)
I am doing this using two...