MHB Points where a line intercepts a circle

Click For Summary
The discussion focuses on finding the intersection points between the line x + 2 and the circle defined by (x + 2)² + y² = 1/2. One point, (-3/2, 1/2), was identified, but the second point remained elusive. A participant clarified that from the equation (x + 2)² = 1/4, two solutions for x can be derived: x = -3/2 and x = -5/2. Consequently, the second intersection point is determined to be (-5/2, -1/2). The thread concludes with both intersection points established.
thazel345
Messages
1
Reaction score
0
circle: (x+2)^2+y^2=1/2
line: x+2
iv been able to find one point but can't find the other
work:
2(x+2)^2 =1/2
divide by 2 on both sides
(x+2)^2=1/4
square both sides
x+2=.5
subtract 2
x=-3/2
i used that to find the y but that only gives me one point please help
 
Mathematics news on Phys.org
thazel345 said:
circle: (x+2)^2+y^2=1/2
line: x+2
iv been able to find one point but can't find the other
work:
2(x+2)^2 =1/2
divide by 2 on both sides
(x+2)^2=1/4
square both sides
x+2=.5
subtract 2
x=-3/2
i used that to find the y but that only gives me one point please help

(Wave)

From $(x+2)^2=\frac{1}{4}$ we get that $x+2= \pm \frac{1}{2}$.
So $x_1=\frac{1}{2}-2=-\frac{3}{2}$ and $x_2=-\frac{1}{2}-2=-\frac{5}{2}$.
So we get the points $(x_1, x_1+2)=\left( -\frac{3}{2}, \frac{1}{2}\right)$ and $(x_2, x_2+2)=\left( -\frac{5}{2}, -\frac{1}{2}\right)$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
23K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K