Currently 20 papers are under consideration:
http://arxiv.org/abs/1512.09010
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies
Anna Ijjas,
Paul J. Steinhardt
(Submitted on 30 Dec 2015)
The results from Planck2015, when combined with earlier observations from WMAP, ACT, SPT and other experiments, were the first observations to disfavor the "classic" inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new 'unlikeliness problem.' Some propose turning instead to a "postmodern" inflationary paradigm in which the cosmological properties in our observable universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.
9 pages and 2 figures. Invited review article for the focus issue "Planck and the fundamentals of cosmology" in
Classical and Quantum Gravity. Accepted for publication.
http://arxiv.org/abs/1512.08959
Entanglement time in the primordial universe
Eugenio Bianchi,
Lucas Hackl,
Nelson Yokomizo
(Submitted on 30 Dec 2015)
We investigate the behavior of the entanglement entropy of space in the primordial phase of the universe before the beginning of cosmic inflation. We argue that in this phase the entanglement entropy of a region of space grows from a zero-law to an area-law. This behavior provides a quantum version of the classical BKL conjecture that spatially separated points decouple in the approach to a cosmological singularity. We show that the relational growth of the entanglement entropy with the scale factor provides a new statistical notion of arrow of time in quantum gravity. The growth of entanglement in the pre-inflationary phase provides a mechanism for the production of the quantum correlations present at the beginning of inflation and imprinted in the CMB sky.
12 pages, 3 figures, Honorable Mention in the Gravity Research Foundation 2015 Essay Competition
http://arxiv.org/abs/1512.08346
Quantum black hole without singularity
Claus Kiefer
(Submitted on 28 Dec 2015)
We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.
5 pages, invited contribution to the BH6 session at the Marcel Grossmann Conference MG14
http://arxiv.org/abs/1512.07690
SL(2,C) Chern-Simons Theory, Flat Connections, and Four-dimensional Quantum Geometry
Hal M. Haggard,
Muxin Han,
Wojciech Kaminski,
Aldo Riello
(Submitted on 24 Dec 2015)
The present paper analyze SL(2,ℂ) Chern-Simons theory on a class of graph complement 3-manifolds, and its relation with classical and quantum geometries on 4-dimensional manifolds. In classical theory, we explain the correspondence between a class of SL(2,ℂ) flat connections on 3-manifold and the Lorentzian simplicial geometries in 4 dimensions. The class of flat connections on the graph complement 3-manifold is specified by a certain boundary condition. The corresponding simplicial 4-dimensional geometries are made by constant curvature 4-simplices. The quantization of 4d simplicial geometry can be carried out via the quantization of flat connection on 3-manifold in Chern-Simons theory. In quantum SL(2,ℂ) Chern-Simons theory, a basis of physical wave functions is the class of (holomorphic) 3d block, defined by analytically continued Chern-Simons path integral over Lefschetz thimbles. Here we propose that the (holomorphic) 3d block with the proper boundary condition imposed gives the quantization of simplicial 4-dimensional geometry. Interestingly in the semiclassical asymptotic expansion of (holomorphic) 3d block, the leading contribution gives the classical action of simplicial Einstein-Hilbert gravity in 4 dimensions, i.e. Lorentzian 4d Regge action on constant curvature 4-simplices with a cosmological constant. Such a result suggests a relation between SL(2,ℂ) Chern-Simons theory on a class of 3-manifolds and simplicial quantum gravity on 4-dimensional manifolds. This paper presents the details for the results reported in
arXiv:1509.00458.
43+11 pages, 9 figures
http://arxiv.org/abs/1512.05743
Evolution of the tensor-to-scalar ratio across the loop quantum cosmology bounce
Edward Wilson-Ewing
(Submitted on 17 Dec 2015)
I review how the separate universe approach to cosmological perturbation theory can be used to study the dynamics of long wavelength perturbations in loop quantum cosmology, and use it to calculate how the long wavelength perturbations evolve across the bounce assuming a constant equation of state. An interesting result is that the tensor-to-scalar ratio can be damped or amplified by quantum gravity effects during the bounce, depending on the equation of state of the matter field dominating the dynamics. In particular, if the equation of state is greater than -1/3 the value of the tensor-to-scalar ratio will be damped during the bounce, in some cases significantly.
12 pages. Prepared for submission to
International Journal of Modern Physics series D, special issue on Loop Quantum Cosmology
http://arxiv.org/abs/1512.05331
A simpler way of imposing simplicity constraints
Andrzej Banburski,
Lin-Qing Chen
(Submitted on 16 Dec 2015)
We investigate a way of imposing simplicity constraints in a holomorphic Spin Foam model that we recently introduced. Rather than imposing the constraints on the boundary spin network, as is usually done, one can impose the constraints directly on the Spin Foam propagator. We find that the two approaches have the same leading asymptotic behaviour, with differences appearing at higher order. This allows us to obtain a model that greatly simplifies calculations, but still has Regge Calculus as its semi-classical limit.
16 pages
http://arxiv.org/abs/1512.04566
Improved Black Hole Fireworks: Asymmetric Black-Hole-to-White-Hole Tunneling Scenario
Tommaso De Lorenzo,
Alejandro Perez
(Submitted on 14 Dec 2015)
A new scenario for gravitational collapse has been recently proposed by Haggard and Rovelli. Presenting the model under the name of black hole fireworks, they claimed that the accumulation of quantum gravitational effects outside the horizon can cause the tunneling of geometry from a black hole to a white hole, allowing a bounce of the collapsing star which can eventually go back to infinity. In this paper we discuss the instabilities of this model and propose a simple minimal modification which eliminates them, as well as other related instabilities discussed in the literature. The new scenario is a time-asymmetric version of the original model with a time-scale for the final explosion that is shorter than m log m in Planck units. Our analysis highlights the importance of irreversibility in gravitational collapse which, in turn, uncovers important issues that cannot be addressed in detail without a full quantum gravity treatment.
18 Pages, 6 Figures
http://arxiv.org/abs/1512.03684
Anisotropic loop quantum cosmology with self-dual variables
Edward Wilson-Ewing
(Submitted on 11 Dec 2015)
A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual connection variables is presented in this paper. The basic operators in the quantum theory correspond to areas and generalized holonomies of the Ashtekar connection and the reality conditions are implemented via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian constraint operator is given explicitly for the case when the matter content is a massless scalar field (in which case the scalar field can be used as a relational clock), and it is shown that the big-bang and big-crunch singularities are resolved in the sense that singular and non-singular states decouple under the action of the Hamiltonian constraint operator.
16 pages
http://arxiv.org/abs/1512.02083
Tests of Quantum Gravity induced non-locality via opto-mechanical quantum oscillators
Alessio Belenchia,
Dionigi M. T. Benincasa,
Stefano Liberati,
Francesco Marin,
Francesco Marino,
Antonello Ortolan
(Submitted on 7 Dec 2015)
Several quantum gravity scenarios lead to physics below the Planck scale characterised by nonlocal, Lorentz invariant equations of motion. We show that such non-local effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of opto-mechanical quantum oscillators is characterised by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the non-locality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
5 pages, 1 figure
http://arxiv.org/abs/1512.01589
Asymptotic safety in an interacting system of gravity and scalar matter
Pietro Donà,
Astrid Eichhorn,
Peter Labus,
Roberto Percacci
(Submitted on 4 Dec 2015)
Asymptotic safety is an attractive scenario for the dynamics of quantum spacetime. Here, we work from a phenomenologically motivated point of view and emphasize that a viable dynamics for quantum gravity in our universe must account for the existence of matter. In particular, we explore the scale-dependence of a scalar matter-gravity-vertex, and investigate whether an interacting fixed point exists for the so-defined Newton coupling. We find a viable fixed point in the pure-gravity system, disregarding scalar quantum fluctuations. We explore its extensions to the case with dynamical scalars, and find indications of asymptotic safety in the matter-gravity system. We moreover examine the anomalous dimensions for different components of the metric fluctuations, and find significant differences between the transverse traceless and scalar component.
15 pages, 14 figures
http://arxiv.org/abs/1512.00713
An embedding of loop quantum cosmology in (b, v) variables into a full theory context
Norbert Bodendorfer
(Submitted on 2 Dec 2015)
Loop quantum cosmology in (b, v) variables, which is governed by a unit step size difference equation, is embedded into a full theory context based on similar variables. From the full theory perspective, the symmetry reduction is characterised by the vanishing of certain phase space functions which are implemented as operator equations in the quantum theory. The loop quantum cosmology dynamics arise as the action of the full theory Hamiltonian on maximally coarse states in the kernel of the reduction constraints. An application of this reduction procedure to spherical symmetry is also sketched, with similar results, but only one canonical pair in (b, v) form.
17 pages
http://arxiv.org/abs/1512.00221
On the relation between reduced quantisation and quantum reduction for spherical symmetry in loop quantum gravity
Norbert Bodendorfer,
Antonia Zipfel
(Submitted on 1 Dec 2015)
Building on a recent proposal for a quantum reduction to spherical symmetry from full loop quantum gravity, we investigate the relation between a quantisation of spherically symmetric general relativity and a reduction at the quantum level. To this end, we generalise the previously proposed quantum reduction by dropping the gauge fixing condition on the radial diffeomorphisms, thus allowing to make direct contact between previous work on reduced quantisation. A dictionary between spherically symmetric variables and observables with respect to the reduction constraints in the full theory is discussed, as well as an embedding of reduced quantum states to a sub sector of the quantum symmetry reduced full theory states. On this full theory sub sector, the quantum algebra of the mentioned observables is computed and shown to qualitatively reproduce the quantum algebra of the reduced variables in the large quantum number limit for a specific choice of regularisation. Insufficiencies in recovering the reduced algebra quantitatively from the full theory are attributed to the oversimplified full theory quantum states we use.
34 pages
http://arxiv.org/abs/1511.05441
3D holography: from discretum to continuum
Valentin Bonzom,
Bianca Dittrich
(Submitted on 17 Nov 2015)
We study the one-loop partition function of 3D gravity without cosmological constant on the solid torus with arbitrary metric fluctuations on the boundary. To this end we employ the discrete approach of (quantum) Regge calculus. In contrast with similar calculations performed directly in the continuum, we work with a boundary at finite distance from the torus axis. We show that after taking the continuum limit on the boundary - but still keeping finite distance from the torus axis - the one-loop correction is the same as the one recently found in the continuum in Barnich et al. for an asymptotically flat boundary. The discrete approach taken here allows to identify the boundary degrees of freedom which are responsible for the non-trivial structure of the one-loop correction. We therefore calculate also the Hamilton-Jacobi function to quadratic order in the boundary fluctuations both in the discrete set-up and directly in the continuum theory. We identify a dual boundary field theory with a Liouville type coupling to the boundary metric. The discrete set-up allows again to identify the dual field with degrees of freedom associated to radial bulk edges attached to the boundary. Integrating out this dual field reproduces the (boundary diffeomorphism invariant part of the) quadratic order of the Hamilton-Jacobi functional. The considerations here show that bulk boundary dualities might also emerge at finite boundaries and moreover that discrete approaches are helpful in identifying such dualities.
42 pages
http://arxiv.org/abs/1511.03644
Hessian and graviton propagator of the proper vertex
Atousa Chaharsough Shirazi,
Jonathan Engle,
Ilya Vilensky
(Submitted on 11 Nov 2015)
The proper spin-foam vertex amplitude is obtained from the EPRL vertex by projecting out all but a single gravitational sector, in order to achieve correct semi-classical behavior. In this paper we calculate the gravitational two-point function predicted by the proper spin-foam vertex to lowest order in the vertex expansion. We find the same answer as in the EPRL case in the `continuum spectrum' limit, so that the theory is consistent with the predictions of linearized gravity in the regime of small curvature. The method for calculating the two-point function is similar to that used in prior works: we cast it in terms of an action integral and to use stationary phase methods. Thus, the calculation of the Hessian matrix plays a key role. Once the Hessian is calculated, it is used not only to calculate the two-point function, but also to calculate the coefficient appearing in the semi-classical limit of the proper vertex amplitude itself. This coefficient is the effective discrete "measure factor" encoded in the spin-foam model. Through a non-trivial cancellation of different factors, we find that this coefficient is the same as the coefficient in front of the term in the asymptotics of the EPRL vertex corresponding to the selected gravitational sector.
20 pages
http://arxiv.org/abs/1510.04896
Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential
Béatrice Bonga,
Brajesh Gupt
(Submitted on 16 Oct 2015)
We investigate the pre-inflationary dynamics of inflation with the Starobinsky potential, favored by recent data from the Planck mission, using techniques developed to study cosmological perturbations on quantum spacetimes in the framework of loop quantum gravity. We find that for a large part of the initial data, inflation compatible with observations occurs. There exists a subset of this initial data that leads to quantum gravity signatures that are potentially observable. Interestingly, despite the different inflationary dynamics, these quantum gravity corrections to the powerspectra are similar to those obtained for inflation with a quadratic potential, including suppression of power at large scales. Furthermore, for super horizon modes the tensor modes show deviations from the standard inflationary paradigm that are unique to the Starobinsky potential and could be important for non-Gaussian modulation and tensor fossils.
30 pages, 11 figures
http://arxiv.org/abs/1510.04701
Timelike information broadcasting in cosmology
Ana Blasco,
Luis J. Garay,
Mercedes Martin-Benito,
Eduardo Martin-Martinez
(Submitted on 15 Oct 2015)
We study the transmission of information and correlations through quantum fields in cosmological backgrounds. With this aim, we make use of quantum information tools to quantify the classical and quantum correlations induced by a quantum massless scalar field in two particle detectors, one located in the early universe (Alice's) and the other located at a later time (Bob's). In particular, we focus on two phenomena: a) the consequences on the transmission of information of the violations of the strong Huygens principle for quantum fields, and b) the analysis of the field vacuum correlations via correlation harvesting from Alice to Bob. We will study a standard cosmological model first and then assess whether these results also hold if we use other than the general relativistic dynamics. As a particular example, we will study the transmission of information through the Big Bounce, that replaces the Big Bang, in the effective dynamics of Loop Quantum Cosmology.
16 pages, 10 figures.
http://arxiv.org/abs/1510.03858
The thermodynamics of quantum spacetime histories
Lee Smolin
(Submitted on 13 Oct 2015)
We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be understood as constrained topological field theories.
To state and derive this correspondence we describe causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near horizon region of black holes by Frodden, Gosh and Perez and Bianchi. This allows us to apply a recent argument of Jacobson to show that if a spin foam history has a semiclassical limit described in terms of a smooth metric geometry, that geometry satisfies the Einstein equations.
These results suggest also a proposal for a quantum equivalence principle.
39 pages, 6 figures
http://arxiv.org/abs/1510.03855
Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data
Tao Zhu,
Anzhong Wang,
Klaus Kirsten,
Gerald Cleaver,
Qin Sheng,
Qiang Wu
(Submitted on 13 Oct 2015)
We derive the primordial power spectra, spectral indices and runnings of both cosmological scalar perturbations and gravitational waves in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous treatment for σ being integers to the case with any given value of σ. For this purpose, we adopt a new calculational strategy in the uniform asymptotic approximation, by expanding the involved integrals first in terms of the inverse-volume correction parameter to its first-order, a consistent requirement of the approximation of the inverse-volume corrections. In this way, we calculate explicitly the quantum gravitational corrections to the standard inflationary spectra and spectral indices to the second-order of the slow-roll parameters, and obtain the observational constraints on the inverse-volume corrections from Planck 2015 data for various values of σ. Using these constraints we discuss whether these quantum gravitational corrections lead to measurable signatures in the cosmological observations. We show that the scale-dependent contributions to inflationary spectra from the inverse-volume corrections could be well within the range of the detectability of the forthcoming generation of experiments.
19 pages, 4 figures, and 2 tables
http://arxiv.org/abs/1510.01925
Projective Loop Quantum Gravity II. Searching for Semi-Classical States
Suzanne Lanéry,
Thomas Thiemann
(Submitted on 7 Oct 2015)
In [
arXiv:1411.3592] an extension of the Ashtekar-Lewandowski (AL) state space of Loop Quantum Gravity was set up with the help a projective formalism introduced by Kijowski [Kijowski 1977; see also:
arXiv:1304.6330,
arXiv:1411.3590]. The motivation for this work was to achieve a more balanced treatment of the position and momentum variables (aka. holonomies and fluxes). Indeed, states in the AL Hilbert spaces describe discrete quantum excitations on top of a vacuum which is an eigenstate of the flux variables (a `no-geometry' state): in such states, most holonomies are totally spread, making it difficult to approximate a smooth, classical 4-geometry. However, going beyond the AL sector does not fully resolve this difficulty: one uncovers a deeper issue hindering the construction of states semi-classical with respect to a full set of observables. In the present article, we analyze this issue in the case of real-valued holonomies (we will briefly comment on the heuristic implications for other gauge groups, eg. (2)). Specifically, we show that, in this case, there does not exist any state on the holonomy-flux algebra in which the variances of the holonomies and fluxes observables would all be finite, let alone small. It is important to note that this obstruction cannot be bypassed by further enlarging the quantum state space, for it arises from the structure of the algebra itself: as there are too many (uncountably many) non-vanishing commutators between the holonomy and flux operators, the corresponding Heisenberg inequalities force the quantum uncertainties to blow up uncontrollably. A way out would be to suitably restrict the algebra of observables. In a companion paper we take the first steps in this direction by developing a general framework to perform such a restriction without giving up the universality and diffeomorphism invariance of the theory.
51 pages, 1 figure
http://arxiv.org/abs/1510.00699
A Perfect Bounce
Steffen Gielen,
Neil Turok
(Submitted on 2 Oct 2015)
We study the quantum cosmology of a universe with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. For FRW backgrounds, we are able to perform the quantum gravity path integral exactly. We find the evolution to describe a "perfect bounce," in which the
universe passes smoothly through the singularity. The Feynman path integral amplitude is precisely that of a relativistic oscillator, for which the scale factor of the universe is the time and the scalar fields are the spatial coordinates. This picture provides natural, unitary quantum mechanical evolution across a bounce. We also study the quantum evolution of anisotropies and of inhomogeneous perturbations, at linear and nonlinear order. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths.
5 pages.